参考文献:《Tensorflow:实战Google深度学习框架》

【一】深度学习简介

1.1 深度学习定义

Mitchell对机器学习的定义:任务T上,随着经验E的增加,效果P也可以随之增加,那么程序可以在经验中学习。

传统机器学习算法的问题:无法从数据中习得更好的特征表达,从而无法有效的利用越来越多的数据

难点:如何数字化的表达现实世界中的实体;将非结构化的内容结构化;从实体中提取特征。

传统机器学习与深度学习的对比

1.2 深度学习历史

深度学习三阶段:

一、仿生机器学习:

  1943年神经网络,

  1958年感知机模型:首个根据数据学习特征权重的模型

  1969:感知机只能解决线性可分问题,不能解决异或问题。 ——导致了神经网络的第一次低潮

二、分布式知识表达(distributed representation)和反向传播算法。

  1990:分布式知识表达:现实世界中的概念应该通过多个神经元来表达,模型中每个神经元应该表达不同概念。

     知识从宽度向深度发展,能够习得另外的组合知识。n*m个缩减到n+m个。

  1990:Rumelhart \ Hinton \ Williams 反向传播算法,计算能力大幅提高。

     卷积神经网络、循环神经网络在发展

  1990: Hochreiter \ Schmidhuber LSTM算法

三、数据量提升 \ 计算能力提高

  ImageNet, Krizhevsky AlexNet,引入深度学习。

1.3 深度学习应用

主要应用范围:

1、计算机视觉:图像分类 (ILSVRC)、物体识别(人脸识别:传统机器学习很难抽取特征)、图像搜索、字符识别

2、语音识别:机器翻译、语音合成

3、自然语言处理:

4、人机博弈:

  AlphaGo的三部分:蒙特卡洛树搜索、估值网络、走棋网络。

  蒙特卡洛树搜索:对不同落子点进行搜索

  走棋网络:给定棋盘,判断下一步落子点

  估值网络:给定棋盘,判断胜率

【tensorflow:Google】一、深度学习简介的更多相关文章

  1. TensorFlow+Keras 01 人工智能、机器学习、深度学习简介

    1 人工智能.机器学习.深度学习的关系 “人工智能” 一词最早是再20世纪50年代提出来的. “ 机器学习 ” 是通过算法,使用大量数据进行训练,训练完成后会产生模型 有监督的学习 supervise ...

  2. TensorFlow与主流深度学习框架对比

    引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...

  3. 基于TensorFlow Serving的深度学习在线预估

    一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...

  4. Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理

    前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...

  5. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  6. Tensorflow 深度学习简介(自用)

    一些废话,也可能不是废话.可能对,也可能不对. 机器学习的定义:如果一个程序可以在任务T上,随着经验E的增加,效果P也可以随之增加,则称这个程序可以在经验中学习. “程序”指的是需要用到的机器学习算法 ...

  7. TensorFlow系列专题(三):深度学习简介

    一.深度学习的发展历程 深度学习的起源阶段 深度学习的发展阶段 深度学习的爆发阶段 二.深度学习的应用 自然语言处理 语音识别与合成 图像领域 三.参考文献   一.深度学习的发展历程 作为机器学习最 ...

  8. 大数据下基于Tensorflow框架的深度学习示例教程

    近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...

  9. TensorFlow+Keras 02 深度学习的原理

    1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = ...

随机推荐

  1. 《Redis官方文档》用Redis构建分布式锁

    用Redis构建分布式锁 在不同进程需要互斥地访问共享资源时,分布式锁是一种非常有用的技术手段. 有很多三方库和文章描述如何用Redis实现一个分布式锁管理器,但是这些库实现的方式差别很大,而且很多简 ...

  2. for迭代序列的三种方式

    while循环是条件性的,for循环是迭代性的. for循环会访问所有迭代对象中的所有元素,并在所有条目都结束后结束循环. for循环迭代序列有三种基本的方式,分别是通过序列项迭代.通过索引迭代.通过 ...

  3. c语言单元测试框架--CuTest

    1.简介 CuTest是一款微小的C语言单元测试框,是我迄今为止见到的最简洁的测试框架之一,只有2个文件,CuTest.c和CuTest.h,全部代码加起来不到一千行.麻雀虽小,五脏俱全,测试的构建. ...

  4. python步长为负时的情况

    Sequence[start:end:step] python 的序列切片中,第一个:隔离了 起始索引 和 结束索引,第二个:隔离了 结束索引和 步长 step为正,则从左到右切片,如果 start ...

  5. const修饰的常量 不能被直接修改 但是可以通过指针进行间接修改

    大家都知道如下代码中,被const限定的a是不可以被直接修改的 void main() { const int a = 3; a=1; } 在C++中const修饰的常量,不能被直接修改,但是可以通过 ...

  6. Python多类继承中,子类默认继承哪个父类的构造函数__init__

    [1]python中如果子类有自己的构造函数,不会自动调用父类的构造函数,如果需要用到父类的构造函数,则需要在子类的构造函数中显式的调用. [2]如果子类没有自己的构造函数,则会直接从父类继承构造函数 ...

  7. jvm-内存区域与内存溢出异常

    内存区域与内存溢出异常 参考: http://www.cnblogs.com/ityouknow/p/5610232.html 所有的Java开发人员可能会遇到这样的困惑?我该为堆内存设置多大空间呢? ...

  8. data augmentation 总结

    data augmentation 几种方法总结 在深度学习中,有的时候训练集不够多,或者某一类数据较少,或者为了防止过拟合,让模型更加鲁棒性,data augmentation是一个不错的选择. 常 ...

  9. 初入Spring-boot(一)

    一.利用eclipse快速创建Spring-boot项目 1.首先去http://start.spring.io网站,勾选所需要的starter,如图: 选择完之后下载该文件,打开后发现是一个正常的m ...

  10. Linux新手常用命令 - 转载

    开始→运行→cmd命令 集锦 cls------------命令窗清屏eqit-----------退出当前命令ping ip--------检查网络故障ipconfig-------查看IP地址wi ...