数论:
C. Alice and Bob
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. The rules are as follows. First, they get a set of n distinct integers. And then they take turns to make the following moves. During each move, either Alice or Bob (the player whose turn is the current) can choose two distinct integers x and y from the set, such that the set doesn't contain their absolute difference |x - y|. Then this player adds integer |x - y| to the set (so, the size of the set increases by one).

If the current player has no valid move, he (or she) loses the game. The question is who will finally win the game if both players play optimally. Remember that Alice always moves first.

Input

The first line contains an integer n (2 ≤ n ≤ 100) — the initial number of elements in the set. The second line contains n distinct space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the set.

Output

Print a single line with the winner's name. If Alice wins print "Alice", otherwise print "Bob" (without quotes).

Examples
input
2
2 3
output
Alice
input
2
5 3
output
Alice
input
3
5 6 7
output
Bob
Note

Consider the first test sample. Alice moves first, and the only move she can do is to choose 2 and 3, then to add 1 to the set. Next Bob moves, there is no valid move anymore, so the winner is Alice.

题意:

两人游戏,最初给出n个数集合当轮到一个人时他要从中选两个数x,y,使得|x-y|不在集合中,然后把|x-y|加进集合。当没法挑选时输。Alice先Bob后。

代码:

//并非1~n的每一个数都能得到。得到的数只可能是最初的n个数的最大公约束数的倍数。
//因为不断地作减法可以看成求gcd的运算,最终减到的最小的数就是他们的gcd.
#include<bits/stdc++.h>
using namespace std;
int n,a[],c[];
int main()
{
cin>>n;
int cnt=,flag=;
for(int i=;i<n;i++) cin>>a[i];
for(int i=;i<n;i++){
if(a[i]==i) cnt++;
else if(a[a[i]]==i) flag=;
}
if(cnt==n) cout<<cnt<<endl;
else if(flag) cout<<cnt+<<endl;
else cout<<cnt+<<endl;
return ;
}
贪心 dp
E. Number Transformation II
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a sequence of positive integers x1, x2, ..., xn and two non-negative integers a and b. Your task is to transform a into b. To do that, you can perform the following moves:

  • subtract 1 from the current a;
  • subtract a mod xi (1 ≤ i ≤ n) from the current a.

Operation a mod xi means taking the remainder after division of number a by number xi.

Now you want to know the minimum number of moves needed to transform a into b.

Input

The first line contains a single integer n (1 ≤  n ≤ 105). The second line contains n space-separated integers x1, x2, ..., xn (2 ≤  xi ≤ 109). The third line contains two integers a and b (0  ≤ b ≤  a ≤ 109, a - b ≤ 106).

Output

Print a single integer — the required minimum number of moves needed to transform number a into number b.

Examples
input
3
3 4 5
30 17
output
6
input
3
5 6 7
1000 200
output
206

题意:

给出n个数x[1...n]和a,b问从a变到b的最少步数。a每次可以减1或者减a%x[i]。

代码:

//每次减去1和a%x[i](0<=i<=n-1)中大的那个,直到a<=b。
//剪枝:x数组去重;显然如果a-a%x[i]<b,x[i]就可以去掉,下次不用计算他了
#include<bits/stdc++.h>
using namespace std;
int n,num[],a,b;
int main()
{
cin>>n;
for(int i=;i<n;i++) cin>>num[i];
cin>>a>>b;
sort(num,num+n);
int len=unique(num,num+n)-num;
int ans=,tmp;
while(a>b){
tmp=a-;
for(int i=;i<len;i++){
int tmpp=a-a%num[i];
if(tmpp<b) num[i--]=num[--len];
else tmp=min(tmp,tmpp);
}
a=tmp;
ans++;
}
cout<<ans<<endl;
return ;
}

Codeforces Round #201 (Div. 2)C,E的更多相关文章

  1. Codeforces Round #201 (Div. 2) - C. Alice and Bob

    题目链接:http://codeforces.com/contest/347/problem/C 题意是给你一个数n,然后n个数,这些数互不相同.每次可以取两个数x和y,然后可以得到|x - y|这个 ...

  2. codeforce Codeforces Round #201 (Div. 2)

    cf 上的一道好题:  首先发现能生成所有数字-N 判断奇偶 就行了,但想不出来,如何生成所有数字,解题报告 说是  所有数字的中最大的那个数/所有数字的最小公倍数,好像有道理:纪念纪念: #incl ...

  3. Codeforces Round #201 (Div. 2). E--Number Transformation II(贪心)

    Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Description You ar ...

  4. Codeforces Round #533 (Div. 2)题解

    link orz olinr AK Codeforces Round #533 (Div. 2) 中文水平和英文水平都太渣..翻译不准确见谅 T1.给定n<=1000个整数,你需要钦定一个值t, ...

  5. Codeforces Round #633 (Div. 2)

    Codeforces Round #633(Div.2) \(A.Filling\ Diamonds\) 答案就是构成的六边形数量+1 //#pragma GCC optimize("O3& ...

  6. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  7. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  8. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  9. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

随机推荐

  1. java对json文件的操作

    第一步:通过FileReader读取json文件第二步:使用BufferReader,先通过I/O读取一定大小的数据缓存到数组中,然后再从数组取出数据.第三步:用一个字符串把每次传来的数据处理后写到新 ...

  2. ubuntu ssh配置

    Secure Shell (SSH) is a cryptographic network protocol for operating network services securely over ...

  3. Tensorflow - Implement for generating some 3-dimensional phony data and fitting them with a plane.

    Coding according to TensorFlow 官方文档中文版 import tensorflow as tf import numpy as np ''' Intro. for thi ...

  4. Python3 Tkinter-Radionbutton

    1.创建单选按钮 from tkinter import * root=Tk() Radiobutton(root,text='b1').pack() Radiobutton(root,text='b ...

  5. es6从零学习(二):promise

    es6从零学习(二):promise 一:promise的由来 某些情况下,回调嵌套很多时,代码就会非常繁琐,会给我们的编程带来很多的麻烦,这种情况俗称——回调地狱.由此,Promise的概念就由社区 ...

  6. cp的使用

    一.形式 cp [options] source1 source2 source3 .... directory 参数意义: 参数 意义 -i 当目标文件已存在时,会询问是否覆盖 -p 连同文件的属性 ...

  7. C语言文件基本操作

    1.用文本方式储存‘1’,‘0’,‘2’存入文件,然后用二进制方式从文件开头读出一个short型数据,并验证结果是否正确 #include<stdio.h> #include<str ...

  8. 第三次寒假作业 sketch 了解

    什么是sketch? sketch 是一种基于散列的数据结构,可以在高速网络环境中,实时地存储流量特征信息,只占用较小的空间资源,并且具备在理论上可证明的估计精度与内存的平衡特性. 通过设置散列函数, ...

  9. Java 变量和输入输出

    一些重要知识 一个源文件里只能有一个public类,其它类数量不限.文件名与public类名相同 JAVA程序严格区分大小写 JAVA应用程序的执行入口是main方法固定写法:public stati ...

  10. TCP系列10—连接管理—9、syncookie、fastopen与backlog

    这部分内容涉及较多linux实现,可以跳过. 一.listen系统调用对backlog的处理 当socket处于LISTEN或者CLOSED状态时,fastopen队列的长度可以通过TCP_FASTO ...