【BZOJ】2100: [Usaco2010 Dec]Apple Delivery(spfa+优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=2100
这题我要吐血啊
我交了不下10次tle。。
噗
果然是写挫了。
一开始没加spfa优化果断t
然后看了题解加了(加错了T_T)还是tle。。我就怀疑数据了。。。
噗
原来我有个地方打错了。。
这个spfa的队列优化真神。。
#include <cstdio>
#include <cstring>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=100005, M=400005;
int ihead[N], cnt, q[N], front, tail, d[N], n, m, x, xx, xxx;
bool vis[N];
struct ED { int to, next, w; }e[M];
inline void add(const int &u, const int &v, const int &w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].w=w;
}
inline void spfa(const int &s) {
memset(d, 0x3f, sizeof(int)*(n+3));
d[s]=0; vis[s]=1; front=tail=0; q[tail++]=s;
while(tail!=front) {
int u=q[front++], v; if(front==N) front=0; vis[u]=0;
for(int i=ihead[u]; i; i=e[i].next) if(d[v=e[i].to]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]) {
--front; if(front<0) front+=N;
q[front]=v;
}
else {
q[tail++]=v; if(tail==N) tail=0;
}
}
}
}
} int main() {
read(m); read(n); read(x); read(xx); read(xxx);
for1(i, 1, m) {
int u=getint(), v=getint(), w=getint();
add(u, v, w);
}
spfa(xx);
int ans=d[x]+d[xxx];
spfa(xxx);
if(ans>d[x]+d[xx]) ans=d[x]+d[xx];
print(ans);
return 0;
}
Description
Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she travels the C (1 <= C <= 200,000) cowpaths which are arranged as the usual graph which connects P (1 <= P <= 100,000) pastures conveniently numbered from 1..P: no cowpath leads from a pasture to itself, cowpaths are bidirectional, each cowpath has an associated distance, and, best of all, it is always possible to get from any pasture to any other pasture. Each cowpath connects two differing pastures P1_i (1 <= P1_i <= P) and P2_i (1 <= P2_i <= P) with a distance between them of D_i. The sum of all the distances D_i does not exceed 2,000,000,000. What is the minimum total distance Bessie must travel to deliver both apples by starting at pasture PB (1 <= PB <= P) and visiting pastures PA1 (1 <= PA1 <= P) and PA2 (1 <= PA2 <= P) in any order. All three of these pastures are distinct, of course. Consider this map of bracketed pasture numbers and cowpaths with distances: If Bessie starts at pasture [5] and delivers apples to pastures [1] and [4], her best path is: 5 -> 6-> 7 -> 4* -> 3 -> 2 -> 1* with a total distance of 12.
CLJ要从Pb点(家)出发,既要去Pa1点NOI赛场拿金牌,也要去Pa2点CMO赛场拿金牌。(途中不必回家)
可以先去NOI,也可以先去CMO。
当然神犇CLJ肯定会使总路程最小,输出最小值。
Input
*
Line 1: Line 1 contains five space-separated integers: C, P, PB, PA1,
and PA2 * Lines 2..C+1: Line i+1 describes cowpath i by naming two
pastures it connects and the distance between them: P1_i, P2_i, D_i
Output
* Line 1: The shortest distance Bessie must travel to deliver both apples
Sample Input
5 1 7
6 7 2
4 7 2
5 6 1
5 2 4
4 3 2
1 2 3
3 2 2
2 6 3
Sample Output
HINT
求翻译.........站内PM我吧.........
Source
【BZOJ】2100: [Usaco2010 Dec]Apple Delivery(spfa+优化)的更多相关文章
- BZOJ 2100: [Usaco2010 Dec]Apple Delivery spfa
由于是无向图,所以可以枚举两个终点,跑两次最短路来更新答案. #include <queue> #include <cstdio> #include <cstring&g ...
- BZOJ 2100: [Usaco2010 Dec]Apple Delivery( 最短路 )
跑两遍最短路就好了.. 话说这翻译2333 ---------------------------------------------------------------------- #includ ...
- bzoj 2100: [Usaco2010 Dec]Apple Delivery【spfa】
洛谷数据好强啊,普通spfa开o2都过不了,要加双端队列优化 因为是双向边,所以dis(u,v)=dis(v,u),所以分别以pa1和pa2为起点spfa一遍,表示pb-->pa1-->p ...
- bzoj2100 [Usaco2010 Dec]Apple Delivery
Description Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, ...
- 【bzoj2100】[Usaco2010 Dec]Apple Delivery 最短路
题目描述 Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she tr ...
- bzoj2100 [Usaco2010 DEC]Apple Delivery苹果贸易
题目描述 一张P个点的无向图,C条正权路.CLJ要从Pb点(家)出发,既要去Pa1点NOI赛场拿金牌,也要去Pa2点CMO赛场拿金牌.(途中不必回家)可以先去NOI,也可以先去CMO.当然神犇CLJ肯 ...
- BZOJ 2101: [Usaco2010 Dec]Treasure Chest 藏宝箱( dp )
dp( l , r ) = sum( l , r ) - min( dp( l + 1 , r ) , dp( l , r - 1 ) ) 被卡空间....我们可以发现 l > r 是无意义的 ...
- bzoj 1715: [Usaco2006 Dec]Wormholes 虫洞 -- spfa判断负环
1715: [Usaco2006 Dec]Wormholes 虫洞 Time Limit: 5 Sec Memory Limit: 64 MB 注意第一次加边是双向边第二次是单向边,并且每次询问前数 ...
- BZOJ 2101 [Usaco2010 Dec]Treasure Chest 藏宝箱:区间dp 博弈【两种表示方法】【压维】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2101 题意: 共有n枚金币,第i枚金币的价值是w[i]. 把金币排成一条直线,Bessie ...
随机推荐
- Discuz常见小问题2-如何修改整个网站的默认字体为微软雅黑
界面-风格管理,然后点击默认模板的编辑,在正常字体和小号字体前面加上你要的字体(比如微软雅黑,XXX,XXX),挨个排到后面,如果前面的字体没有则显示后面的 修改之后的效果(注意你不要在页面定义别的C ...
- 我的PHPMailer_v5.1 使用
<?php /** * Simple example script using PHPMailer with exceptions enabled * @package phpmailer * ...
- Kubernetes1.6新特性:全面支持多颗GPU
(一) 背景资料 GPU就是图形处理器,是Graphics Processing Unit的缩写.电脑显示器上显示的图像,在显示在显示器上之前.要经过一些列处理,这个过程有个专有的名词叫" ...
- C、C++中如何成功嵌入python
修改lib文件名称,拷贝修改C:\Python27\libs目录下原来的python27.lib为python27_d.lib 包含头文件在C:\Python27\include目录下 包含lib文件 ...
- java学习重点
1.Java的三种体系: J2SE 用于桌面开发,低端商务开发(Java to Standard Edition) : J2ME 用于移动电话.电子消费品.嵌入式开发(Java to Micro Ed ...
- ionic 进入二级目录以后隐藏底部导航栏(tabs)
1.在标签ion-tabs中添加:ng-class=”{‘tabs-item-hide’: $root.hideTabs}”,源码如下: <ion-tabs class="tabs-i ...
- ES6 Reflect
1.Reflect概述 ES6 为了操作对象而提供的新 API 2.Reflect设计目的 (1)将Object对象的一些明显属于语言内部的方法(比如Object.defineProperty),放到 ...
- Unity Inspector 给组件自动关联引用(二)
通过声明的变量名称,主动关联引用. 使用这个关联引用两种方式1. 给你组件继承 MonoAutoQuote 点击组件inspector 按钮执行2. 给你组件类添加[AAutoQuote] 特性 ...
- tomcat禁用webdav
在tomcat的web.xml,以及自己项目的web.xml中,均需添加以下内容: <security-constraint> <web-resource-collection> ...
- arm-linux内核start_kernel之前启动分析(1)-接过bootloader的衣钵
前段时间移植uboot细致研究过uboot启动过程,近期耐不住寂寞.想对kernel下手. Uboot启动过程分析博文连接例如以下: http://blog.csdn.net/skyflying201 ...