【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2395

【题目大意】

  给出一张无向图,每条边上有a,b两个值,求生成树,
  使得suma*sumb最小,在满足这个前提下保证suma最小。

【题解】

  把方案看成一个二维点,x=sum(a),y=sum(b)
  答案一定在下凸壳上,找到l,r两个点,l是x最小的,r是y最小的
  然后递归调用work(l,r):找到离该直线最远的点,那个点一定在下凸壳上
  将边权设为(a,b)叉积(l-r),求出mst就是那个点mid
  因为叉积计算的时候包含符号,(suma,sumb)与直线的叉积最小就是三角形的面积最大,
  因而就是最远点,总和的叉积最小等价于叉积最小生成树。
  然后递归work(l,mid),work(mid,r)
  就能够枚举下凸壳上所有的点了。

【代码】

#include <cstdio>
#include <algorithm>
using namespace std;
const int N=210,M=10010;
typedef long long LL;
struct P{
int x,y;
P(){x=y=0;}
P(int _x,int _y){x=_x;y=_y;}
P operator-(const P&rhs){return P(x-rhs.x,y-rhs.y);}
}l,r;
LL cross(P a,P b){return (LL)a.x*b.y-(LL)a.y*b.x;}
struct E{int x,y,a,b,c;}e[M];
bool cmp(E a,E b){return a.c<b.c;}
int n,m,f[N];
LL ans=0x3f3f3f3f3f3f3f3f,ansx,ansy;
int sf(int x){return f[x]==x?x:f[x]=sf(f[x]);}
P kruskal(){
P p;int i;
sort(e+1,e+m+1,cmp);
for(int i=1;i<=n;i++)f[i]=i;
for(int i=1;i<=m;i++){
if(sf(e[i].x)!=sf(e[i].y)){
f[f[e[i].x]]=f[e[i].y];
p.x+=e[i].a,p.y+=e[i].b;
}
}if((LL)p.x*p.y<=ans){
if(ans==(LL)p.x*p.y){if(p.x<ansx)ansx=p.x,ansy=p.y;}
else{
ans=(LL)p.x*p.y;
ansx=p.x;
ansy=p.y;
}
}return p;
}
void work(P l,P r){
P t=l-r;
for(int i=1;i<=m;i++)e[i].c=cross(P(e[i].a,e[i].b),t);
P mid=kruskal();
if(cross(mid-l,r-mid)>0)work(l,mid),work(mid,r);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
e[i].x++; e[i].y++; e[i].c=e[i].a;
}l=kruskal();
for(int i=1;i<=m;i++)e[i].c=e[i].b;
r=kruskal(); work(l,r);
printf("%lld %lld\n",ansx,ansy);
return 0;
}

BZOJ 2395 [Balkan 2011]Timeismoney(最小乘积生成树)的更多相关文章

  1. bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...

  2. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  3. Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)

    问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...

  4. @bzoj - 2395@ [Balkan 2011]Timeismoney

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n ...

  5. bzoj 2395: [Balkan 2011]Timeismoney【计算几何+最小生成树】

    妙啊,是一个逼近(?)的做法 把两个值最为平面上的点坐标,然后答案也是一个点. 首先求出可能是答案的点xy分别是按照c和t排序做最小生成树的答案,然后考虑比这两个点的答案小的答案,一定在xy连线靠近原 ...

  6. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  7. 【BZOJ】2395: [Balkan 2011]Timeismoney

    题解 最小乘积生成树! 我们把,x的总和和y的总和作为x坐标和y左边,画在坐标系上 我们选择两个初始点,一个是最靠近y轴的A,也就是x总和最小,一个是最靠近x轴的B,也就是y总和最小 连接两条直线,在 ...

  8. bzoj 2395 Timeismoney —— 最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p ...

  9. P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】

    正题 题目链接:https://www.luogu.com.cn/problem/P5540 题目大意 给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化 ...

随机推荐

  1. Java 对象排序详解

    很难想象有Java开发人员不曾使用过Collection框架.在Collection框架中,主要使用的类是来自List接口中的ArrayList,以及来自Set接口的HashSet.TreeSet,我 ...

  2. Berland National Library

    题目链接:http://codeforces.com/problemset/problem/567/B 题目描述: Berland National Library has recently been ...

  3. jqgrid 翻页记录选中行

    简单的jqgrid列表 $("#list").jqGrid({ url:contextPath + "/getList", postData: data, da ...

  4. zoj2001 Adding Reversed Numbers

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2001 Adding Reversed Numbers Time ...

  5. Java常用开发思想与知识点小记(一)

    1.   子类在覆盖父类的方法时,不能抛出比父类更多的异常(儿子不能比父亲干更多的坏事),所以只能捕捉异常,通常在web层捕获异常,给用户一个友好提示. 2.Java内存模型与并发编程三个特性 htt ...

  6. python中的ftplib模块

    前言 Python中默认安装的ftplib模块定义了FTP类. ftplib模块相关参数: 加载ftp模块:from ftplib import FTP ftp = FTP()#设置变量ftp.set ...

  7. win10远程桌面配置

    Win10连接远程桌面的时候提示您的凭证不工作该怎么办? http://www.cnblogs.com/zhuimengle/p/6048128.html 二.服务器端 1.依旧进入组策略,不过是在服 ...

  8. 自己动手实现arm函数栈帧回溯【转】

    转自:http://blog.csdn.net/dragon101788/article/details/18668505 内核版本:2.6.14 glibc版本:2.3.6 CPU平台:arm gl ...

  9. skb管理函数之skb_put、skb_push、skb_pull、skb_reserve

    四个操作函数直接的区别,如下图: /** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data t ...

  10. write-ups

    https://github.com/MarioVilas/write-ups https://github.com/Deplorable-Mountaineer/Robot_Dynamite htt ...