作者:桂。

时间:2017-04-27  23:24:55

链接:http://www.cnblogs.com/xingshansi/p/6777945.html


本文仅仅梳理最基本的绘图方法。

一、初始化

假设已经安装了matplotlib工具包。

利用matplotlib.figure.Figure创建一个图框:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

二、直线绘制(Line plots)

基本用法:

ax.plot(x,y,z,label=' ')

code:

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend() plt.show()

三、散点绘制(Scatter plots)

基本用法:

ax.scatter(xs, ys, zs, s=20, c=None, depthshade=True, *args, *kwargs)
  • xs,ys,zs:输入数据;
  • s:scatter点的尺寸
  • c:颜色,如c = 'r'就是红色;
  • depthshase:透明化,True为透明,默认为True,False为不透明
  • *args等为扩展变量,如maker = 'o',则scatter结果为’o‘的形状

code:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np def randrange(n, vmin, vmax):
'''
Helper function to make an array of random numbers having shape (n, )
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin)*np.random.rand(n) + vmin fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') n = 100 # For each set of style and range settings, plot n random points in the box
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
xs = randrange(n, 23, 32)
ys = randrange(n, 0, 100)
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, c=c, marker=m) ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label') plt.show()

四、线框图(Wireframe plots)

基本用法:

ax.plot_wireframe(X, Y, Z, *args, **kwargs)
  • X,Y,Z:输入数据
  • rstride:行步长
  • cstride:列步长
  • rcount:行数上限
  • ccount:列数上限

code:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') # Grab some test data.
X, Y, Z = axes3d.get_test_data(0.05) # Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()

五、表面图(Surface plots)

基本用法:

ax.plot_surface(X, Y, Z, *args, **kwargs)
  • X,Y,Z:数据
  • rstride、cstride、rcount、ccount:同Wireframe plots定义
  • color:表面颜色
  • cmap:图层

code:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np fig = plt.figure()
ax = fig.gca(projection='3d') # Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R) # Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False) # Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()

六、三角表面图(Tri-Surface plots)

基本用法:

ax.plot_trisurf(*args, **kwargs)
  • X,Y,Z:数据
  • 其他参数类似surface-plot

code:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np n_radii = 8
n_angles = 36 # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False) # Repeat all angles for each radius.
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) # Convert polar (radii, angles) coords to cartesian (x, y) coords.
# (0, 0) is manually added at this stage, so there will be no duplicate
# points in the (x, y) plane.
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten()) # Compute z to make the pringle surface.
z = np.sin(-x*y) fig = plt.figure()
ax = fig.gca(projection='3d') ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True) plt.show()

七、等高线(Contour plots)

基本用法:

ax.contour(X, Y, Z, *args, **kwargs)

code:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contour(X, Y, Z, cmap=cm.coolwarm)
ax.clabel(cset, fontsize=9, inline=1) plt.show()

二维的等高线,同样可以配合三维表面图一起绘制:

code:

from mpl_toolkits.mplot3d import axes3d
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm) ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100) plt.show()

也可以是三维等高线在二维平面的投影:

code:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm) ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100) plt.show()

 八、Bar plots(条形图)

基本用法:

ax.bar(left, height, zs=0, zdir='z', *args, **kwargs
  • x,y,zs = z,数据
  • zdir:条形图平面化的方向,具体可以对应代码理解。

code:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.random.rand(20) # You can provide either a single color or an array. To demonstrate this,
# the first bar of each set will be colored cyan.
cs = [c] * len(xs)
cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8) ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z') plt.show()

九、子图绘制(subplot)

  A-不同的2-D图形,分布在3-D空间,其实就是投影空间不空,对应code:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt fig = plt.figure()
ax = fig.gca(projection='3d') # Plot a sin curve using the x and y axes.
x = np.linspace(0, 1, 100)
y = np.sin(x * 2 * np.pi) / 2 + 0.5
ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)') # Plot scatterplot data (20 2D points per colour) on the x and z axes.
colors = ('r', 'g', 'b', 'k')
x = np.random.sample(20*len(colors))
y = np.random.sample(20*len(colors))
c_list = []
for c in colors:
c_list.append([c]*20)
# By using zdir='y', the y value of these points is fixed to the zs value 0
# and the (x,y) points are plotted on the x and z axes.
ax.scatter(x, y, zs=0, zdir='y', c=c_list, label='points in (x,z)') # Make legend, set axes limits and labels
ax.legend()
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_zlim(0, 1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

   B-子图Subplot用法

与MATLAB不同的是,如果一个四子图效果,如:

MATLAB:

subplot(2,2,1)
subplot(2,2,2)
subplot(2,2,[3,4])

Python:

subplot(2,2,1)
subplot(2,2,2)
subplot(2,1,2)

code:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data
from matplotlib import cm
import numpy as np # set up a figure twice as wide as it is tall
fig = plt.figure(figsize=plt.figaspect(0.5)) #===============
# First subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 1, projection='3d') # plot a 3D surface like in the example mplot3d/surface3d_demo
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=10) #===============
# Second subplot
#===============
# set up the axes for the second plot
ax = fig.add_subplot(2,1,2, projection='3d') # plot a 3D wireframe like in the example mplot3d/wire3d_demo
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()

 补充:

文本注释的基本用法:

code:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt fig = plt.figure()
ax = fig.gca(projection='3d') # Demo 1: zdir
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (1, 4, 4, 9, 4, 1)
ys = (2, 5, 8, 10, 1, 2)
zs = (10, 3, 8, 9, 1, 8) for zdir, x, y, z in zip(zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
ax.text(x, y, z, label, zdir) # Demo 2: color
ax.text(9, 0, 0, "red", color='red') # Demo 3: text2D
# Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes) # Tweaking display region and labels
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.set_zlim(0, 10)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis') plt.show()

参考:

python绘制三维图的更多相关文章

  1. Python绘制面积图

    一.Python绘制面积图对应代码如下图所示 import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans ...

  2. Python绘制折线图

    一.Python绘制折线图 1.1.Python绘制折线图对应代码如下图所示 import matplotlib.pyplot as pltimport numpy as np from pylab ...

  3. 使用Matlab绘制三维图的几种方法

    以下六个函数都可以实现绘制三维图像: surf(xx,yy,zz); surfc(xx,yy,zz); mesh(xx,yy,zz); meshc(xx,yy,zz); meshz(xx,yy,zz) ...

  4. python绘制疫情图

    python中进行图表绘制的库主要有两个:matplotlib 和 pyecharts, 相比较而言: matplotlib中提供了BaseMap可以用于地图的绘制,但是个人觉得其绘制的地图不太美观, ...

  5. Python画三维图-----插值平滑数据

    一.二维的插值方法: 原始数据(x,y) 先对横坐标x进行扩充数据量,采用linspace.[如下面例子,由7个值扩充到300个] 采用scipy.interpolate中的spline来对纵坐标数据 ...

  6. 如何用 Python 绘制玫瑰图等常见疫情图

    新冠疫情已经持续好几个月了,目前,我国疫情已经基本控制住了,而欧美国家正处于爆发期,我们会看到很多网站都提供了多种疫情统计图,今天我们使用 Python 的 pyecharts 框架来绘制一些比较常见 ...

  7. Python绘制雷达图(俗称六芒星)

    原文链接:https://blog.csdn.net/Just_youHG/article/details/83904618 背景 <Python数据分析与挖掘实战> 案例2–航空公司客户 ...

  8. 使用Python绘制漫步图

    代码如下: import matplotlib.pyplot as plt from random import choice class RandomWalk(): def __init__(sel ...

  9. matplotlib绘制三维图

    本文参考官方文档:http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html 起步 新建一个matplotlib.figure.Figure对象, ...

随机推荐

  1. 优化EF Code First第一次请求速度

    由于EF Code First模式没有模型文件,所以很多一次请求的时候速度比较慢,EF需要将对应的数据库映射关系加载到内存里面,往后请求就比较快.可以通过在程序初始化的时候增加一段代码来优化EF第一次 ...

  2. sh: ./bin/my_print_defaults: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录 FATAL ERROR: Neither host 'kvm' nor 'localhost' could be looked up with ./bin/resolveip Please configure the 'hostname'

    初始化数据库报错: sh: ./bin/my_print_defaults: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录FATAL ERROR ...

  3. 如何将同一云服务下的虚拟机从经典部署模型迁移到 Azure Resource Manager

    适用场景 用户希望将特定云服务下的所有虚拟机从经典部署模型(以下简称:ASM)迁移到 Azure Resource Manager(以下简称:ARM). Note 如果云服务下使用 VNET 也希望将 ...

  4. 【待补充】[Linux] nc

    [nc 是做什么的] [nc怎么用] 查看帮助 nc -help # 查看帮助 nc -help # 监听端口 -l, --listen Bind and listen for incoming co ...

  5. 常用vimrc记录

    记录下vim 的一些常用配置.每当换到一台新电脑的时候,使用vim的时候,缩进等各种方式都不友好.每次都要到互联网上去找,还要找半天,这篇博客,记录下我常用的vim配置,以及扩展,能够快速的配置开发环 ...

  6. 读高性能JavaScript编程 第一章

    草草的看完第一章,虽然看的是译文也是感觉涨姿势了, 我来总结一下: 由于 大多数浏览器都是 single process 处理 ui updatas and js execute 于是产生问题: js ...

  7. OWASP TOP10(2017)

    原文链接:https://www.t00ls.net/viewthread.php?from=notice&tid=39385

  8. SmartUpload相关类的说明

    ㈠ File类 这个类包装了一个上传文件的所有信息.通过它,可以得到上传文件的文件名.文件大小.扩展名.文件数据等信息. File类主要提供以下方法: 1.saveAs作用:将文件换名另存. 原型: ...

  9. ArcGIS Earth1.9最新版安装和使用教程

    1.下载ArcGIS Earth 官网下载地址:https://www.esri.com/en-us/arcgis/products/arcgis-earth 在这个网页的最下面填上信息,就可以下载了 ...

  10. Gold Point Game~~

    黄金点游戏 1. 队友博客链接 GitHub链接 2.过程总结 (1)俩人各自所做工作?对方编程习惯总结(是否遵照代码规范.是否关注算法效率.是否做了代码复审.界面设计是否关注美观实用等等): 这次作 ...