题意

地上 \(1\) 到 \(m\) 个位置摆上椅子,有 \(n\) 个人要就座,每个人都有座位癖好:选择 \(\le L\) 或者 \(\ge R\) 的位置。问至少需要在两边添加多少个椅子能让所有人坐满。

\(m\le n\le 2\times 10^5\)

分析

  • 因为最后的形式一定是左边和右边连续的一段+一些新加入的椅子。只需要求出所有人构成的子集 \(|x|-|\digamma (x)|\) 的最大值,不需要知道具体哪些椅子参与了完美匹配。

  • 注意到区域的并除了全集以外仍然可以用 \([1,l]\cup[r, m]\) 来表示。

  • 考虑扫描线,枚举 \(l,r\) 之后找出所有满足 \(L\le l ,r\le R\) 的人,能够证明这样不会错过最优解。

  • 如果某个子集的 \(\digamma\) 是全集的话要特殊考虑,此时 \(|x|-|\digamma (x)|\) 的值为 \(n-m\) 。

  • 总时间复杂度为 \(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 2e5 + 7;
int n, m, ans;
int adv[N << 2], mx[N << 2];
#define Ls o << 1
#define Rs (o << 1 | 1)
void st1(int o, int v) {
adv[o] += v;
mx[o] += v;
}
void pushdown(int o) {
if(!adv[o]) return;
st1(Ls, adv[o]);
st1(Rs, adv[o]);
adv[o] = 0;
}
void pushup(int o) {
mx[o] = max(mx[Ls], mx[Rs]);
}
void build(int l, int r,int o){
if(l == r) {
mx[o] = l;
return;
}int mid = l + r >> 1;
build(l, mid, Ls);
build(mid + 1, r, Rs);
pushup(o);
}
void modify(int L, int R, int l, int r,int o, int v) {
if(L > R) return;
if(L <= l && r <= R) {
st1(o, v);
return;
}
pushdown(o);int mid = l + r >> 1;
if(L <= mid) modify(L, R, l, mid, Ls, v);
if(R > mid) modify(L, R, mid + 1, r, Rs, v);
pushup(o);
}
int query(int L, int R, int l, int r, int o) {
if(L > R) return 0;
if(L <= l && r <= R) return mx[o];
pushdown(o);int mid = l + r >> 1;
if(R <= mid) return query(L, R, l, mid, Ls);
if(L > mid) return query(L, R, mid + 1, r, Rs);
return max(query(L, R, l, mid, Ls), query(L, R, mid + 1, r, Rs));
}
vector<int> h[N];
int main() {
n = gi(), m = gi();
rep(i, 1, n) {
int l = gi(), r = gi();
h[l].pb(r);
}
build(0, m + 1, 1);
rep(l, 0, m + 1) {
for(auto r: h[l] ) {
modify(0, r, 0, m + 1, 1, 1);
}
Max(ans, query(l + 1, m + 1, 0, m + 1, 1) - l - m - 1);
}
printf("%d\n", max(n - m, ans));
return 0;
}

[arc076F]Exhausted?[霍尔定理+线段树]的更多相关文章

  1. 【AtCoder ARC076】F Exhausted? 霍尔定理+线段树

    题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max( ...

  2. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  3. [BZOJ3693]圆桌会议[霍尔定理+线段树]

    题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...

  4. [BZOJ2138]stone[霍尔定理+线段树]

    题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中 ...

  5. [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]

    题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...

  6. ARC076 F Exhausted? Hall定理 + 线段树扫描线

    ---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一 ...

  7. LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)

    题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...

  8. arc076 F - Exhausted? (霍尔定理学习)

    题目链接 Problem Statement There are M chairs arranged in a line. The coordinate of the i-th chair ($$$1 ...

  9. BZOJ.3693.圆桌会议(Hall定理 线段树)

    题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到H ...

随机推荐

  1. centos6.5安装mysql

    1.yum -install  mysql mysql-server -y 2.修改mysql的root的密码 登录:mysql -uroot        修改密码:            use ...

  2. python类的内置方法

    1,__init__(self) 初始化方法,实例化一个对象的时候就会被执行 2,__call__(self,*args) 把实例对象作为函数调用,即实例化一个对象后,在对象后面加括号即可调用__ca ...

  3. Oracle EBS 贷项通知单核销

    SELECT cm.trx_number ,fnd_flex_ext.get_segs('SQLGL', 'GL#', gcc.chart_of_accounts_id, ad.code_combin ...

  4. 微信小程序审核 出现85085 提交审核数量过多问题

    前段时间发布了一个新版本小程序(错误代码:85085,说明:submit audit reach limit, please try later hint: [OKYBha04570729]),由于我 ...

  5. 【转】Linux 高级的视角来查看Linux引导过程

    [原文]https://www.toutiao.com/i6594210975480545800/ 1.概述 图 1 是我们在20,000 英尺的高度看到的视图. 当系统首次引导时,或系统被重置时,处 ...

  6. VPC见解

    VPC是什么? VPC:Virtual  Private  Cloud,即虚拟私有云.讨论VPC时,我们可以从两个方面来讨论: 从服务的角度来看:VPC是一种云,但是这个云不属于我们常见的公有云.私有 ...

  7. beta冲刺————第三天(3/5)

    完善的具体内容: 前端: (1)可以进行修改文字大小背景 其中,金色的文字个人觉得很好看,点赞.(我很满意啊) (2)可以改变成夜间模式(也很不错啊) 后端: 尝试将本地的后端war文件,以及数据库传 ...

  8. beta冲刺————第一天(1/5)

    人员的再次分配: 调走人员:陈裕鹏(原来在本队伍主要进行文章推荐算法的设计) 调入人员:陈邡(原Dipper团队,负责游戏内容的策划案,以及做一些后端的探索工作.) 现队员工作划分: 王国华,吴君毅, ...

  9. Nowcoder 提高组练习赛-R3

    https://www.nowcoder.com/acm/contest/174#question 今天的题好难呀,只有94个人有分.然后我就爆零光荣 考到一半发现我们班要上物理课,还要去做物理实验( ...

  10. C#实现之(自动更新)

    做开发的人,尤其是做客户端(C/S)系统开发的人都会遇到一个头疼的问题,就是软件的自动更新:系统发布后怎样自动的更新程序,在下有幸开发过一个自动更新程序,更新程序与任何宿主程序是完全独立的:只要在主程 ...