[USACO08FEB]修路Making the Grade
比较难的dp,比赛时打的找LIS,然后其他的尽可能靠近,40分。
先举个例子
6
1 2 3 1 4 5
6
1 2 3 3 4 5
第4个1要么改成3,要么改成4,反正是数列中的数。
所以最优情况下,答案中的数都是原数列中有的。
b[]是a[]由小到大排序之后的数组
令f[i][j]表示使前i个数成为不减的最小花费,而且第i个的高度为b[j].
f[i][j]=min(f[i-1][k])+abs(a[i]-b[j]);1<=k<=n
k从1~n递增,一个显然的优化就是单调队列,递增的,每次取队首。
不增同理。

AC:

#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.18
using namespace std;
int f[][];
int q[];
int a[];
int b[];
int l,r;
int ans;
int n;
int m;
void in(int &x)
{
int y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(int x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main()
{
in(n);
For(i,,n)
in(a[i]),b[i]=a[i];
sort(b+,b+n+);
m=unique(b+,b+n+)-b-;
For(i,,n)
{
r=;
For(j,,m)
{
while(r&&f[i-][j]<=f[i-][q[r]])r--;
q[++r]=j;
f[i][j]=f[i-][q[]]+abs(a[i]-b[j]);
}
}
ans=inf;
For(i,,m)
ans=min(ans,f[n][i]);
For(i,,n)
For(j,,n)
f[i][j]=;
For(i,,n)
{
r=;
For(j,,m)
{
while(l<=r&&f[i-][j]>=f[i-][q[r]])r--;
q[++r]=j;
f[i][j]=f[i-][q[]]+abs(a[i]-b[m]);
}
}
ans=min(ans,f[n][m]);
o(ans);
return ;
}

考场贪心骗分代码:

 #include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.18
using namespace std;
int n;
int Max;
int last;
int a[];
int d[];
bool b[];
int p[];
int f[];
int ans[];
void in(int &x)
{
int y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(int x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
} void LIS()
{
For(i,,n)
f[i]=,d[i]=;
For(i,,n)
{
For(j,,i-)
{
if(a[j]<=a[i])
{
if(f[j]+>f[i])
{
f[i]=f[j]+;
d[i]=j;
}
}
}
if(Max<f[i])
{
Max=f[i];
last=i;
}
}
int ft;
for(ft=last;d[ft]!=;ft=d[ft])
b[ft]=true;
for(int i=ft-;i>=;i--)
{
ans[]+=abs(p[i]-p[i+]);
p[i]=p[i+];
}
For(i,ft+,n)
if(!b[i])
{
ans[]+=abs(p[i]-p[i-]);
p[i]=p[i-];
}
} void LRS()
{
Max=;
For(i,,n)
f[i]=,b[i]=false,d[i]=;
For(i,,n)
{
For(j,,i-)
{
if(a[j]>=a[i])
{
if(f[j]+>f[i])
{
f[i]=f[j]+;
d[i]=j;
}
}
}
if(Max<f[i])
{
Max=f[i];
last=i;
}
}
int ft;
for(ft=last;d[ft]!=;ft=d[ft])
b[ft]=true;
for(int i=ft-;i>=;i--)
{
ans[]+=abs(p[i]-p[i+]);
p[i]=p[i+];
}
For(i,ft+,n)
if(!b[i])
{
ans[]+=abs(p[i]-p[i-]);
p[i]=p[i-];
}
} int main()
{
// freopen("grading.in","r",stdin);
// freopen("grading.out","w",stdout);
in(n);
For(i,,n)
in(a[i]),p[i]=a[i];
LIS();
For(i,,n)
p[i]=a[i];
LRS();
o(min(ans[],ans[]));
return ;
}

[USACO08FEB]修路Making the Grade的更多相关文章

  1. 洛谷 P2893 [USACO08FEB]修路Making the Grade 解题报告

    P2893 [USACO08FEB]修路Making the Grade 题目描述 A straight dirt road connects two fields on FJ's farm, but ...

  2. 【DP】+【贪心】【前缀和】洛谷P2893 [USACO08FEB]修路Making the Grade 题解

        正常的没想到的DP和玄学贪心. 题目描述 A straight dirt road connects two fields on FJ's farm, but it changes eleva ...

  3. luogu2893 [USACO08FEB]修路Making the Grade

    ref #include <algorithm> #include <iostream> #include <cstring> #include <cstdi ...

  4. [USACO08FEB]修路Making the Grade 动态规划

    对的\(n^3\)的程序调了一个月了,惊了... HSZ学oi\(\Longleftrightarrow\)闭眼学oi 要不是翻旧账还看不见.. 这是有\(n^2\)做法的. 参见LYD的书P244 ...

  5. P2893 [USACO08FEB]修路

    直入主题. 农夫约翰想改造一条路,原来的路的每一段海拔是Ai,修理后是Bi花费|A_i–B_i|.我们要求修好的路是单调不升或者单调不降的.求最小花费. 数据范围:n<=2000,0≤ Ai ≤ ...

  6. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  7. USACO Making the Grade

    洛谷 P2893 [USACO08FEB]修路Making the Grade https://www.luogu.org/problemnew/show/P2893 JDOJ 2566: USACO ...

  8. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  9. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

随机推荐

  1. 基于asp.net + easyui框架,一步步学习easyui-datagrid——实现分页和搜索(二)

    http://blog.csdn.net/jiuqiyuliang/article/details/19967031 目录: 基于asp.net + easyui框架,一步步学习easyui-data ...

  2. ubuntu14的unity desktop显示异常

    在多用户下,卸载compiz后某个单一用户出现菜单栏和任务栏图标消失的情况. 这时,需要在图形界面下重置compiz $dconf reset -f /org/compiz/ 重启unity $set ...

  3. arcgis计算邻接矩阵

    求邻接矩阵 教程链接   http://m.blog.csdn.net/wan_yanyan528/article/details/49175673 (1) 将目标shp文件导出一份副本备用(以省级为 ...

  4. python数据分析scipy和matplotlib(三)

    Scipy 在numpy基础上增加了众多的数学.科学及工程常用的库函数: 线性代数.常微分方程求解.信号处理.图像处理.稀疏矩阵等: Matplotlib 用于创建出版质量图表的绘图工具库: 目的是为 ...

  5. Golang的字符编码介绍

    Golang的字符编码介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Go里面内建仅支持UTF8字符串编码,因此如果你用fmt.Printf之类的函数无法将GBK,GB2312 ...

  6. 怎么使用 JavaScript 将网站后台的数据变化实时更新到前端

    实时这个工作现在大体有两种方法一.前端不断地向后台轮询请求数据查询的接口(不管你是用AJAX还是什么)然后将返回的数据重绘在页面上,这以前端页面为主动的方式.二.如果浏览器支持Websocket 那么 ...

  7. centos下安装python3.6.2

    一.下载 官网地址:https://www.python.org/downloads/source/ 我下载的是最新的3.6.2rc版本 # cd /opt/ wget https://www.pyt ...

  8. POJ 3537 multi-sg 暴力求SG

    长为n的一列格子,轮流放同种棋子,率先使棋子连成3个者胜. 可以发现每次放一个棋子后,后手都不能放在[x-2,x+2]这个区间,那么相当于每次放棋将游戏分成了两个,不能放棋者败. 暴力求SG即可 /* ...

  9. CSS function--(来自网易)

    /* function */ .f-cb:after,.f-cbli li:after{;overflow:hidden;content:".";} .f-cb,.f-cbli l ...

  10. 在 Linux 中安装 VMware Tools

    由于较新的Linux版本中都包含了vm的部分组件,导致直接安装VMware Tools失败.所以这里写了篇新的. 软件版本:VMware 12 Linux版本:Ubuntu Desktop 16.04 ...