机器学习之线性回归使用Python和tensorflow实现
导入依赖包
import tensorflow as tf
import numpy as np
import matplotlib.pylab as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
生成直线数据并加入噪音画图显示
train_x = np.linspace(-1, 1, 100) # 生成 -1 到 1之间 分成100份
# print(train_x)
noise = np.random.randn(*train_x.shape) * 0.3
train_y = 2 * train_x + noise # 给每一个点加上噪音
# print(noise)
plt.plot(train_x, train_y, "go", label="我的初始数据")
plt.legend()
plt.show()
定义模型的输入和输出
x = tf.placeholder("float")
y = tf.placeholder("float")
# 定义并初始化模型的权重偏置
w = tf.Variable(tf.random_normal([1]), name="weight")
b = tf.Variable(tf.zeros([1]), name="bias")
# 定义模型的前向传播过程
y_predict = tf.multiply(w, x) + b
定义模型的损失函数,反向传播
cost = tf.reduce_mean(tf.square(y - y_predict))
learning_rate = 0.01 # 定义学习率
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 定义优化器
init = tf.global_variables_initializer()
定义超参数
train_epochs = 100
display_epoch = 2
训练模型
with tf.Session() as sess:
sess.run(init)
plotdata = {"epochs": [], "cost": []} # 保存训练得到的参数
for epoch in range(train_epochs):
for X, Y in zip(train_x, train_y):
sess.run(optimizer, feed_dict={x: X, y: Y})
if epoch % display_epoch == 0:
print("训练的epoch为:%d cost为:%f %f" % (epoch+1, sess.run(cost, feed_dict={x: train_x, y: train_y}), sess.run(b)))
plotdata["epochs"].append(epoch+1)
plotdata["cost"].append(sess.run(cost, feed_dict={x: train_x, y: train_y}))
print("训练完成")
print("模型训练的结果为: ", "w", sess.run(w), "b:", sess.run(b), "cost:",
sess.run(cost, feed_dict={x: train_x, y: train_y}))
画图显示
plt.plot(train_x, train_y, "go", label="我的初始数据")
plt.plot(train_x, sess.run(w) * train_x + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
机器学习之线性回归使用Python和tensorflow实现的更多相关文章
- 机器学习之线性回归(纯python实现)][转]
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...
- 《转载》python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习学习资源分享
本次分享一部分python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习的学习资源,也是一些比较基础的,如果大家有看过网易云课堂的吴恩达的入门课程,在看这些视频还是一个很不错的提 ...
- 机器学习3- 一元线性回归+Python实现
目录 1. 线性模型 2. 线性回归 2.1 一元线性回归 3. 一元线性回归的Python实现 3.1 使用 stikit-learn 3.1.1 导入必要模块 3.1.2 使用 Pandas 加载 ...
- 机器学习4- 多元线性回归+Python实现
目录 1 多元线性回归 2 多元线性回归的Python实现 2.1 手动实现 2.1.1 导入必要模块 2.1.2 加载数据 2.1.3 计算系数 2.1.4 预测 2.2 使用 sklearn 1 ...
- 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程
机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- JavaScript机器学习之线性回归
译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师. 原文: Machine Learning with JavaScript : Part 1 译者: Fundebug ...
- 机器学习1—简介及Python机器学习环境搭建
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算 ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
随机推荐
- 【转】Java学习---Java的锁和Mysql的锁机制
[原文]https://www.toutiao.com/i6593861446428262916/ Java和数据库的锁机制 https://www.toutiao.com/i659386144642 ...
- Linux运维之——每日小技巧,谈进程与线程的区别
线程是进程中执行运算的最小单位,是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源. ...
- laravel 实现思路以及各组件原理
laravel 内核是个IOC容器,IOC是把本来自己实例化的对象. 通过在容器里注册,通过容器来进行实例化. laravel队列用的是redis的列表来实现.
- H.__mro__) MRO- C3算法
- Terminal Service 终端链接
2008 64位前有这项服务,之后就与远程管理合并了 如果要设置他的连接数可以去 桌面 --> 管理工具 --> 远程桌面服务 最大数设置成1个好了
- html简单介绍(二)
表格 table标签:border:表示边框的大小 <table border="1"> <tr> <td>row(行1), cell(列1)& ...
- javascript实现百度地图鼠标滑动事件显示、隐藏
其实现思路是给label设置样式,我们来看下具体做法吧 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 var label = new BMap.Labe ...
- php header函数导出excel表格
推荐一个除了用PHPExcel导出表格之外的另外一种比较简单不需要引入类文件的表格导入方法——header()导出excel表格. 导出表格的步骤封装成了方法,以便于重复使用,代码如下: /** * ...
- python-celery定时提交任务
pip install celery 使用消息中间件:RabbitMQ/Redis app=Celery('任务名',backend='xxx',broker='xxx') 基本使用 import c ...
- HTTPS_SSL apache认证、配置的、步骤以及原理说明
一 .1.单向认证,就是传输的数据加密过了,但是不会校验客户端的来源 2.双向认证,如果客户端浏览器没有导入客户端证书,是访问不了web系统的,找不到地址,想要用系统的人没有证书就访问不了系统HTTP ...