机器学习之线性回归使用Python和tensorflow实现
导入依赖包
import tensorflow as tf
import numpy as np
import matplotlib.pylab as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
生成直线数据并加入噪音画图显示
train_x = np.linspace(-1, 1, 100) # 生成 -1 到 1之间 分成100份
# print(train_x)
noise = np.random.randn(*train_x.shape) * 0.3
train_y = 2 * train_x + noise # 给每一个点加上噪音
# print(noise)
plt.plot(train_x, train_y, "go", label="我的初始数据")
plt.legend()
plt.show()
定义模型的输入和输出
x = tf.placeholder("float")
y = tf.placeholder("float")
# 定义并初始化模型的权重偏置
w = tf.Variable(tf.random_normal([1]), name="weight")
b = tf.Variable(tf.zeros([1]), name="bias")
# 定义模型的前向传播过程
y_predict = tf.multiply(w, x) + b
定义模型的损失函数,反向传播
cost = tf.reduce_mean(tf.square(y - y_predict))
learning_rate = 0.01 # 定义学习率
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 定义优化器
init = tf.global_variables_initializer()
定义超参数
train_epochs = 100
display_epoch = 2
训练模型
with tf.Session() as sess:
sess.run(init)
plotdata = {"epochs": [], "cost": []} # 保存训练得到的参数
for epoch in range(train_epochs):
for X, Y in zip(train_x, train_y):
sess.run(optimizer, feed_dict={x: X, y: Y})
if epoch % display_epoch == 0:
print("训练的epoch为:%d cost为:%f %f" % (epoch+1, sess.run(cost, feed_dict={x: train_x, y: train_y}), sess.run(b)))
plotdata["epochs"].append(epoch+1)
plotdata["cost"].append(sess.run(cost, feed_dict={x: train_x, y: train_y}))
print("训练完成")
print("模型训练的结果为: ", "w", sess.run(w), "b:", sess.run(b), "cost:",
sess.run(cost, feed_dict={x: train_x, y: train_y}))
画图显示
plt.plot(train_x, train_y, "go", label="我的初始数据")
plt.plot(train_x, sess.run(w) * train_x + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
机器学习之线性回归使用Python和tensorflow实现的更多相关文章
- 机器学习之线性回归(纯python实现)][转]
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...
- 《转载》python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习学习资源分享
本次分享一部分python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习的学习资源,也是一些比较基础的,如果大家有看过网易云课堂的吴恩达的入门课程,在看这些视频还是一个很不错的提 ...
- 机器学习3- 一元线性回归+Python实现
目录 1. 线性模型 2. 线性回归 2.1 一元线性回归 3. 一元线性回归的Python实现 3.1 使用 stikit-learn 3.1.1 导入必要模块 3.1.2 使用 Pandas 加载 ...
- 机器学习4- 多元线性回归+Python实现
目录 1 多元线性回归 2 多元线性回归的Python实现 2.1 手动实现 2.1.1 导入必要模块 2.1.2 加载数据 2.1.3 计算系数 2.1.4 预测 2.2 使用 sklearn 1 ...
- 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程
机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- JavaScript机器学习之线性回归
译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师. 原文: Machine Learning with JavaScript : Part 1 译者: Fundebug ...
- 机器学习1—简介及Python机器学习环境搭建
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算 ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
随机推荐
- [转]Java学习---7大经典的排序算法总结实现
[原文]https://www.toutiao.com/i6591634652274885128/ 常见排序算法总结与实现 本文使用Java实现这几种排序. 以下是对排序算法总体的介绍. 冒泡排序 比 ...
- PHP中unset,array_splice删除数组中元素的区别
php中删除数组元素是非常的简单的,但有时删除数组需要对索引进行一些排序要求我们会使用到相关的函数,这里我们来介绍使用unset,array_splice删除数组中的元素区别吧 如果要在某个数组中删除 ...
- Invalid action class configuration that references an unknown class named [XX] .
多次遇到这个错误,难以解决,有时候出现,有时候没有,很神奇,今天发现了一点端倪,虽然说不上找到了所有导致这个bug的原因.至少,也是很主要的一种了. 其实,透过结果,如果debug用心,一行代码一行代 ...
- mpvue 应用 Vant Weapp框架开发微信小程序
今天在使用mpvue开发微信小程序的过程中需要实现一个底部上拉选择列表的功能,因为之前做过H5微信公众号的开发,使用的就是有赞的Vant-ui,所以第一时间就想到了有赞的Vant Weapp UI框架 ...
- Solr建立索引时,过滤HTML标签
原文地址 http://www.joyphper.net/article/201306/188.html 1.在数据库的读取文件data-config.xml 中的entity 标记里边添加 tra ...
- day3-作业及答案
作业:1.用python实现冒泡排序# [50,20,30,10]## 升序:谁大谁交换到后面# 降序:谁大谁交换到前面## 以升序为例# 第1趟:# [20,50,30,10]# [20,30,50 ...
- PAT A1004 Counting Leaves (30 分)——树,DFS,BFS
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family member ...
- 装饰器 python 你也可以叫语法糖
1.最简单的装饰器不带入参 def func(): pass def decorate(func) def wrapper(): return func() return wrapper 使用 @ ...
- c# 菜鸟包裹查询
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...
- 20155330 《网络对抗》 Exp6 信息搜集与漏洞扫描
20155330 <网络对抗> Exp6 信息搜集与漏洞扫描 基础问题回答 哪些组织负责DNS,IP的管理? 互联网名称与数字地址分配机构(The Internet Corporation ...