前言:
这是一篇记录小刘学习机器学习过程的随笔。

正文:
支持向量机(SVM)是一组用于分类, 回归和异常值检测的监督学习方法。
在分类问题中,SVM就是要找到一个同时离各个类别尽可能远的决策边界即最大化margin(margin为图中2虚线的距离)。这种尽可能远的思想能够提高模型的泛化能力。


虚线上的点是支持向量,实线是决策边界。此图为线性可分的情况。

求margin的最大值就相当于求d(支持向量到决策边界的距离)的最大值。
决策边界为wx-b=0
任意点到边界的距离为
为了方便计算,我们将2个类分别称为1和-1。那么可以得到约束条件


因为是常数所有化简得
为方便表达写为,注意此非彼
进一步化简得
由于支持向量到边界的距离就是1,所有最大化问题转换为min||w||,为方便后面的计算改写成
最终我们得到一个带约束条件的优化问题

那么如何求解带约束条件的优化问题呢?
这里我们应用拉格朗日对偶性,由对偶问题求原问题。

解对偶问题
求偏导:


代入得:

由数值计算得到
再由对偶问题的解得到原问题的解:

至此,我们得到了在线性可分的情况下决策边界的表达式。

但是在实际生活中很多情况是线性不可分的,如何解决非线性问题呢?这里我们引入升维的概念。

很明显,上图中我们无法找出一个线性决策边界。这个时候我们需要引入第三个维度,即z = x² + y²

这样我们就能用一条直线来做边界了

然而这种映射到高维度的方法会极大的增加计算量。为了减少工作量我们引入核函数的技巧。
核函数是二元函数,输入是变换之前的两个向量,其输出与两个向量变换之后的内积相等。这样的“巧合”让我们可以忽略了映射而通过核函数直接计算映射后的值。
也就是说将问题转换为我们就不用在高维空间计算了。
一般用到的核函数如下:
线性核函数:
多项式核函数:
径像基核函数/高斯核函数:
拉普拉斯核函数:
sigmod核函数:
至于如何选择核函数,一般来说,线性情况就用线性核,非线性的时候用径像基核就可以了。

结语:
这是小刘的学习心得,如有错误欢迎大家指正:)

彩图来源:https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

小刘的机器学习---SVM的更多相关文章

  1. 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)

    (写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...

  2. 文本分类学习 (五) 机器学习SVM的前奏-特征提取(卡方检验续集)

    前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样 ...

  3. 小刘的深度学习---CNN

    前言: 前段时间我在树莓派上通过KNN,SVM等机器学习的算法实现了门派识别的项目,所用到的数据集是经典的MNIST.可能是因为手写数字与印刷体存在一些区别,识别率并是很不高.基于这样的情况,我打算在 ...

  4. [机器学习] SVM——Hinge与Kernel

    Support Vector Machine [学习.内化]--讲出来才是真的听懂了,分享在这里也给后面的小伙伴点帮助. learn from: https://www.youtube.com/wat ...

  5. 机器学习--------SVM

    #SVM的使用 (结合具体代码说明,代码参考邹博老师的代码) 1.使用numpy中的loadtxt读入数据文件 data:鸢尾花数据 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3 ...

  6. 程序员训练机器学习 SVM算法分享

    http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文 ...

  7. 小刘的深度学习---Faster RCNN

    前言: 对于目标检测Faster RCNN有着广泛的应用,其性能更是远超传统的方法. 正文: R-CNN(第一个成功在目标检测上应用的深度学习的算法) 从名字上可以看出R-CNN是 Faster RC ...

  8. [机器学习]SVM原理

    SVM是机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位.本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick ...

  9. 机器学习——SVM

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 带核的SVM为什么能分 ...

随机推荐

  1. Git如何永久删除文件(包括历史记录)

    有些时候不小心上传了一些敏感文件(例如密码), 或者不想上传的文件(没及时或忘了加到.gitignore里的), 而且上传的文件又特别大的时候, 这将导致别人clone你的代码或下载zip包的时候也必 ...

  2. IE9 添加事件DOMContentLoaded,方法addEventListener

    IE9 新添加 事件DOMContentLoaded,方法addEventListener

  3. leetcode 3. Longest Substring Without Repeating Characters [java]

    idea: 设置一个hashset存储非重复元素 j:遍历s i:最近的一个非重复指针 注意点: 1.Set set = new HashSet<>(); add remove publi ...

  4. 【2018暑假集训模拟一】Day2题解

    T1 园艺工人的求助 [题目描述]终于,在一段繁忙的训练之后,到了NOIP 的举办的时候.同学们坐上了大巴车,享受着沿途的风光,讨论着未解决的问题,憧憬着NOIP 赛场上切题的样子.很快,大巴车到了大 ...

  5. MP实战系列(九)之集成Shiro

    下面示例是在之前的基础上进行的,大家如果有什么不明白的可以参考MP实战系列的前八章 当然,同时也可以参考MyBatis Plus官方教程 建议如果参考如下教程,使用的技术为spring+mybatis ...

  6. Android之网络摄像头

    实现的功能就是两个手机在一个局域网内可以互相观看对方的摄像头图像,当然如果都是连接公网那么就能远程互看了,,,,和视频聊天差不多,,不过没有声音,,,,,,,, 源码是在网上找的(具体地址忘了,如有侵 ...

  7. MVC 在action拦截器中获取当前进入的控制器和aciton名

    我们在实现了action拦截器以后(继承至System.Web.Mvc.IActionFilter),需要在重写的方法OnActionExecuting中去获得当前进入的控制器和action名称,如何 ...

  8. 运放参数的详细解释和分析-part3,输入失调电压Vos及温漂

    运放参数的详细解释和分析-part3,输入失调电压Vos及温漂 在运放的应用中,不可避免的会碰到运放的输入失调电压Vos问题,尤其对直流信号进行放大时,由于输入失调电压Vos的存在,放大电路的输出端总 ...

  9. IC设计推荐书籍

    IC设计推荐书籍 听语音 | 浏览:779 | 更新:2014-07-19 10:52 1 2 3 4 5 6 7 分步阅读 接触IC设计这一行已经有7年的时间了,前面4年是大学本科,用来学习知识,现 ...

  10. Linux中一个网卡含有多个IP,将从IP升级为主IP的方法

    今天在查看虚拟机的时候,发现某一网卡含有多个IP地址: eno16777736: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu qdisc pfifo_fas ...