机器学习进阶-图像基本操作-图像数据读取 1.cv2.imread(图片读入) 2.cv2.imshow(图片展示) 3.cv2.waitKey(图片停留的时间) 4.cv2.destroyAllWindows(清除所有的方框界面) 5.cv2.imwrite(对图片进行保存)
1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE) # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为灰度图,
2. cv2.imshow('cat', img) # imshow表示展示图片,第一个参数表示图片的名字, 第二个参数表示需要显示的图片
3. cv2.waitKey(0) #表示图片停留的时间, 0表示按任意键退出
4.cv2.destroyAllWindows() #表示清除所有的方框界面
5.cv2.imwrite('mycat.png', img) # 对图片进行保存,第一个参数表示保存后的图片名,第二个参数表示需要保存的图片
代码
# 图片的读入
import cv2 img = cv2.imread('cat.jpg') # 读入的顺序是BGR格式 cv2.imshow('cat', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows() # 灰度图的读入, cv2.IMREAD_GRAYSCALE
img = cv2.imread('cat.jpg', cv2.IMREAD_GRAYSCALE) cv2.imshow('cat', img)
cv2.waitKey(0)
cv2.destroyAllWindows() # 图片的保存
cv2.imwrite('my_cat.png', img)

机器学习进阶-图像基本操作-图像数据读取 1.cv2.imread(图片读入) 2.cv2.imshow(图片展示) 3.cv2.waitKey(图片停留的时间) 4.cv2.destroyAllWindows(清除所有的方框界面) 5.cv2.imwrite(对图片进行保存)的更多相关文章
- 机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2) # 对两个图像关键点进行连线操作 参数说明:im ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- OpenCV计算机视觉学习(1)——图像基本操作(图像视频读取,ROI区域截取,常用cv函数解释)
1,计算机眼中的图像 我们打开经典的 Lena图片,看看计算机是如何看待图片的: 我们点击图中的一个小格子,发现计算机会将其分为R,G,B三种通道.每个通道分别由一堆0~256之间的数字组成,那Ope ...
- SSD源码解读——数据读取
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...
- 机器学习进阶-图像基本操作-数值计算 1.cv2.add(将图片进行加和) 2.cv2.resize(图片的维度变换) 3.cv2.addWeighted(将图片按照公式进行重叠操作)
1.cv2.add(dog_img, cat_img) # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, ...
- 机器学习进阶-图像基本操作-边界补全操作 1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 进行边界的补零操作 2.cv2.BORDER_REPLICATE(边界补零复制操作)...
1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 参数说明: i ...
- 机器学习进阶-图像特征harris-角点检测 1.cv2.cornerHarris(进行角点检测)
1.cv2.cornerHarris(gray, 2, 3, 0.04) # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子 ...
- 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)
1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...
- 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...
随机推荐
- Android开发之五大布局篇
一.Android中常用的5大布局方式有以下几种: 线性布局(LinearLayout):按照垂直或者水平方向布局的组件. 相对布局(RelativeLayout):相对其它组件的布局方式. 绝对布局 ...
- Hive数据导入导出的几种方式
一,Hive数据导入的几种方式 首先列出讲述下面几种导入方式的数据和hive表. 导入: 本地文件导入到Hive表: Hive表导入到Hive表; HDFS文件导入到Hive表; 创建表的过程中从其他 ...
- ACM主要算法
ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...
- Web jsp开发学习——Session使用
先展示效果: 导包: 在servlet的doget里创建session 在head里显示session 接下来进行注销的命令 点击注销链接到这个 ...
- centos7.4安装过程
开启CPU虚拟化 按到install CentOS7 按下tab 输入net.ifnames=0 biosdevname=0 先来一段文档v1 ============================ ...
- Could not determine own NN ID in namespace 'mycluster'
执行hdfs namenode -bootstrapStandby的时候报错如下 19/03/24 18:00:48 ERROR namenode.NameNode: Failed to start ...
- win10使用4G 模块RNDIS模式上网
Windons使用RNDIS模式上网步骤 Chapter 1 模块端配置 1模块设置为RNDIS模式 1. 以EC20CEFAG模块为例 2. 命令如下: 1) ...
- hive之权限问题AccessControlException Permission denied: user=root, access=WR
问题描述:在集群上,用hive分析数据出现如下错误 FAILED: Execution Error, return code from org.apache.hadoop.hive.ql.exec.D ...
- mybatis的插件,挺好支持下
利用 Mybatis-generator自动生成代码http://www.cnblogs.com/yjmyzz/p/4210554.html Mybatis 通用 Mapper3 https://gi ...
- MySql存储过程与函数详解
存储过程和函数是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免开发人员重复的编写相同的SQL语句.而且,存储过程和函数是在MyS ...