1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE)  # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为灰度图,

2. cv2.imshow('cat', img)  # imshow表示展示图片,第一个参数表示图片的名字, 第二个参数表示需要显示的图片

3. cv2.waitKey(0)  #表示图片停留的时间, 0表示按任意键退出

4.cv2.destroyAllWindows()  #表示清除所有的方框界面

5.cv2.imwrite('mycat.png', img)  # 对图片进行保存,第一个参数表示保存后的图片名,第二个参数表示需要保存的图片

代码

# 图片的读入
import cv2 img = cv2.imread('cat.jpg') # 读入的顺序是BGR格式 cv2.imshow('cat', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows() # 灰度图的读入, cv2.IMREAD_GRAYSCALE
img = cv2.imread('cat.jpg', cv2.IMREAD_GRAYSCALE) cv2.imshow('cat', img)
cv2.waitKey(0)
cv2.destroyAllWindows() # 图片的保存
cv2.imwrite('my_cat.png', img)

机器学习进阶-图像基本操作-图像数据读取 1.cv2.imread(图片读入) 2.cv2.imshow(图片展示) 3.cv2.waitKey(图片停留的时间) 4.cv2.destroyAllWindows(清除所有的方框界面) 5.cv2.imwrite(对图片进行保存)的更多相关文章

  1. 机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)

    1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:im ...

  2. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  3. OpenCV计算机视觉学习(1)——图像基本操作(图像视频读取,ROI区域截取,常用cv函数解释)

    1,计算机眼中的图像 我们打开经典的 Lena图片,看看计算机是如何看待图片的: 我们点击图中的一个小格子,发现计算机会将其分为R,G,B三种通道.每个通道分别由一堆0~256之间的数字组成,那Ope ...

  4. SSD源码解读——数据读取

    之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...

  5. 机器学习进阶-图像基本操作-数值计算 1.cv2.add(将图片进行加和) 2.cv2.resize(图片的维度变换) 3.cv2.addWeighted(将图片按照公式进行重叠操作)

    1.cv2.add(dog_img, cat_img)  # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, ...

  6. 机器学习进阶-图像基本操作-边界补全操作 1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 进行边界的补零操作 2.cv2.BORDER_REPLICATE(边界补零复制操作)...

    1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 参数说明: i ...

  7. 机器学习进阶-图像特征harris-角点检测 1.cv2.cornerHarris(进行角点检测)

    1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子 ...

  8. 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)

    1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...

  9. 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)

    1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...

随机推荐

  1. 享元(FlyWeight)模式

    享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式.享元模式尝试 ...

  2. 服务注册发现consul之四: 分布式锁之四:基于Consul的KV存储和分布式信号量实现分布式锁

    一.基于key/value实现 我们在构建分布式系统的时候,经常需要控制对共享资源的互斥访问.这个时候我们就涉及到分布式锁(也称为全局锁)的实现,基于目前的各种工具,我们已经有了大量的实现方式,比如: ...

  3. folly无锁队列,尝试添加新的函数(续)

    基于上一篇文章,dropHead取出节点后,删除节点,会出现内存访问的问题.按照这个逻辑,如果将移出的节点保存到一个无锁队列中,然后在需要节点的时候,从这个备用的无锁队列中取出节点,那么应该就可以避开 ...

  4. Laravel 5.5 FormRequest 自定义错误消息 postman调试时X-Requested-With设为XMLHttpRequest

    Laravel 5.5 FormRequest 自定义错误消息 使用FormRequest进行表单验证,就不用让验证逻辑和控制器里面的逻辑都混在一起.但在使用的时候呢,发现json错误返回的数据,与我 ...

  5. maven入门安装及HelloWorld实现

    一.安装maven 1.下载    https://maven.apache.org/download.cgi     官网进行下载 2.安装 2.1  解压 本人在D盘建立一个maven文件夹,然后 ...

  6. Django中的视图

    Django的View(视图) 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误, ...

  7. Web Service进阶

    选框架犹如选媳妇,选来选去,最后我还是选了“丑媳妇(CXF)”,为什么是它?因为 CXF 是 Apache 旗下的一款非常优秀的 WS 开源框架,具备轻量级的特性,而且能无缝整合到 Spring 中. ...

  8. win10安装tomcat9

    环境:win10 64bit.tomcat 时间:2016年9月6日 15:11:47 一.下载tomcat 用浏览器打开tomcat官网:http://tomcat.apache.org/ 在左侧的 ...

  9. dubbo-文档

    Srping版Dubbo集成中文地址:https://dubbo.gitbooks.io/dubbo-user-book/content/preface/background.html SpringB ...

  10. 解决从客户端(Content="<div><p ><p>12312...")中检测到有潜在危险的Request.Form 值。

    [HttpPost] [ValidateInput(false)]//解决从客户端(Content="<div><p ><p>12312..." ...