RNN的一种类型模型被称为长短期记忆网络(LSTM)。我觉得这是一个有趣的名字。它听起来也意味着:短期模式长期不会被遗忘。

LSTM的精确实现细节不在本文的范围之内。相信我,如果只学习LSTM模型会分散我们的注意力,因为它还没有确定的标准

 

所示。

:导入相关库

import numpy as np

import tensorflow as tf

from tensorflow.contrib import rnn

所示,构造函数里面设置模型超参数,权重和成本函数。

:定义一个类及其构造函数

class SeriesPredictor:

def __init__(self, input_dim, seq_size, hidden_dim=10):

self.input_dim = input_dim //#A

self.seq_size = seq_size //#A

self.hidden_dim = hidden_dim //#A

self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]),name='W_out') //#B

self.b_out = tf.Variable(tf.random_normal([1]), name='b_out') //#B

self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim]) //#B

self.y = tf.placeholder(tf.float32, [None, seq_size]) //#B

self.cost = tf.reduce_mean(tf.square(self.model() - self.y)) //#C

self.train_op = tf.train.AdamOptimizer().minimize(self.cost) //#C

self.saver = tf.train.Saver() //#D

#A超参数。

#B权重变量和输入占位符。

#C成本优化器(cost optimizer)。

#D辅助操作

详细介绍了如何使用TensorFlow来实现使用LSTM的预测模型。

:定义RNN模型

def model(self):

"""

:param x: inputs of size [T, batch_size, input_size]

:param W: matrix of fully-connected output layer weights

:param b: vector of fully-connected output layer biases

"""

cell = rnn.BasicLSTMCell(self.hidden_dim) #A

outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32) #B

num_examples = tf.shape(self.x)[0]

W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])#C

out = tf.matmul(outputs, W_repeated) + self.b_out

out = tf.squeeze(out)

return out

#A创建一个LSTM单元。

#B运行输入单元,获取输出和状态的张量。

#C将输出层计算为完全连接的线性函数。

所示,你打开会话并重复运行优化器。

另外,你可以使用交叉验证来确定训练模型的迭代次数。在这里我们假设固定数量的epocs。

训练后,将模型保存到文件中,以便稍后加载使用。

:在一个数据集上训练模型

def train(self, train_x, train_y):

with tf.Session() as sess:

tf.get_variable_scope().reuse_variables()

sess.run(tf.global_variables_initializer())

for i in range(1000): #A

mse = sess.run([self.train_op, self.cost], feed_dict={self.x: train_x, self.y: train_y})

if i % 100 == 0:

print(i, mse)

save_path = self.saver.save(sess, 'model.ckpt')

print('Model saved to {}'.format(save_path))

加载已保存的模型,并通过馈送一些测试数据以此来运行模型。如果学习的模型在测试数据上表现不佳,那么我们可以尝试调整LSTM单元格的隐藏维数

:测试学习的模型

def test(self, test_x):

with tf.Session() as sess:

tf.get_variable_scope().reuse_variables()

self.saver.restore(sess, './model.ckpt')

output = sess.run(self.model(), feed_dict={self.x: test_x})

print(output)

中,我们将创建输入序列,称为train_x,和相应的输出序列,称为train_y。

训练并测试一些虚拟数据

if __name__ == '__main__':

predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)

train_x = [[[1], [2], [5], [6]],

[[5], [7], [7], [8]],

[[3], [4], [5], [7]]]

train_y = [[1, 3, 7, 11],

[5, 12, 14, 15],

[3, 7, 9, 12]]

predictor.train(train_x, train_y)

test_x = [[[1], [2], [3], [4]], #A

[[4], [5], [6], [7]]] #B

predictor.test(test_x)

,3,5,7。

,9,11,13。

你可以将此预测模型视为黑盒子,并用现实世界的时间数据进行测试。

Tensorflow RNN_LSTM实例的更多相关文章

  1. Mac tensorflow mnist实例

    Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上 ...

  2. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  3. Forward-backward梯度求导(tensorflow word2vec实例)

    考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度 ...

  4. TensorFlow 简单实例

    TF 手写体识别简单实例: TensorFlow很适合用来进行大规模的数值计算,其中也包括实现和训练深度神经网络模型.下面将介绍TensorFlow中模型的基本组成部分,同时将构建一个CNN模型来对M ...

  5. 条件随机场(crf)及tensorflow代码实例

    对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场( ...

  6. 关于深度学习之TensorFlow简单实例

    1.对TensorFlow的基本操作 import tensorflow as tf import os os.environ[" a=tf.constant(2) b=tf.constan ...

  7. TensorFlow 基本使用

    使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 ten ...

  8. [学习笔记] TensorFlow 入门之基本使用

    整体介绍 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使 ...

  9. 【Tensorflow】Tensorflow入门教程

    基本使用 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使 ...

随机推荐

  1. swift - 加速器/摇一摇功能

    import UIKit class ViewController: UIViewController { override func viewDidLoad() { super.viewDidLoa ...

  2. git删除提交历史

    精准入口==>官方文档 Q:我们在提交代码时,把密码或者敏感信息也提交了,怎么办? A:“在本地删除密码或敏感信息后,再push到远程仓库” Q:"但这样删除后,在仓库的commit历 ...

  3. YII2开启路由配置后,新加的模块无法访问

    最近使用YII2,自定义创建了一个自定义模块users,位置为app\modules\users. 'modules' => [ 'users' => [ 'class' => 'a ...

  4. django ORM 增删改查 模糊查询 字段类型 及参数等

    ORM 相关 #sql中的表 #创建表: CREATE TABLE employee( id INT PRIMARY KEY auto_increment , name VARCHAR (), gen ...

  5. ios微信打开网页键盘弹起后页面上滑,导致弹框里的按钮响应区域错位

    input失去焦点,页面被顶起没有还原,所以就有以下的方法来处理 $("input").blur(function(){   setTimeout(() => {    co ...

  6. java 检查异常 和 非检查异常

    个人见解 ,如果有问题 ,还希望大神们 指正 1. 非检查异常 又称运行时 异常 ,所有 继承自 RuntimeException 的异常都是 非检查异常  ,, 如果你不处理  会有 虚拟机 mai ...

  7. activemq , redis

    activemq是干什么的?即时消息通信,简单说: A发送消息给activemq 服务,B监听服务获取消息.假如有如下场景: A发送了一个请求,但是这个请求需要做 10 项工作,如果按照正常操作,需要 ...

  8. 软件测试基础Ⅲ(osi7层协议,测试模型,LoadRunner组件,软件质量模型)

    osi7层开放式系统互连网络模型 1.物理层:主要定义物理设备标准,如网线的接口类型.光纤的接口类型.各种传输介质的传输速率等.它的主要作用是传输比特流(就是由1.0转化为电流强弱来进行传输,到达目的 ...

  9. ubuntu配置ftp server

    ubuntu配置ftp server 1. 安装vsftpd   sudo apt-get install vsftpd 安装后会自动新建一个用户ftp,密码ftp,作为匿名用户登录的默认用户 sud ...

  10. Git使用基础篇(zz)

    Git使用基础篇 您的评价:          收藏该经验       Git是一个分布式的版本控制工具,本篇文章从介绍Git开始,重点在于介绍Git的基本命令和使用技巧,让你尝试使用Git的同时,体 ...