bellman-ford算法(判断有没有负环)
#include <iostream>
#include <vector>
#include<string>
#include<cstring>
using namespace std;
# define ll long long
# define maxn 1000+10
# define inf 0x3f3f3f3f
int n,m,t;
double mg;
struct node
{
int to;
double lv;
double yon;
node(int w,double t1,double t2)
{
to=w;
lv=t1;
yon=t2;
}
};
vector<node>wakaka[maxn];
double dis[maxn];
bool spfa()
{
for(int i=1; i<=n; i++)dis[i]=0;
dis[t]=mg;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
int len=wakaka[j].size();
for(int k=0; k<len; k++)
{
node temp=wakaka[j][k];
if((dis[j]-temp.yon)*temp.lv>dis[temp.to])
{
dis[temp.to]=(dis[j]-temp.yon)*temp.lv;
if(i==n)return true;
}
}
}
}
return false;
for(int i=1; i<=n; i++)//判断负环
{
if(dis[q[i].to]>dis[i]+wakaka[q[i]].cost)
break;
}
}
int main()
{
while(cin>>n>>m>>t>>mg)
{
for(int i=1; i<=n; i++)
{
wakaka[i].clear();
}
for(int i=1; i<=m; i++)
{
int t1,t2;
double s1,s2,w1,w2;
cin>>t1>>t2>>s1>>w1>>s2>>w2;
wakaka[t1].push_back(node(t2,s1,w1));
wakaka[t2].push_back(node(t1,s2,w2));
}
if(spfa())cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
bellman-ford算法(判断有没有负环)的更多相关文章
- poj3259Wormholes (Bellman_Ford/SPFA/Floyed算法判断是否存在负环)
题目链接:http://poj.org/problem?id=3259 题目大意:一个图,有n个顶点,其中有m条边是双向的且权值为为正,w条边是单向的且权值为负,判断途中是否存在负环,如果有输出YES ...
- 使用spfa算法判断有没有负环
如果存在最短路径的边数大于等于点数,就有负环 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你判断图中是否存在负权回路. 输入格式 第一行包含整数n和m. 接下来m行每行 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- POJ 3259 Wormholes(最短路,判断有没有负环回路)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 24249 Accepted: 8652 Descri ...
- vijos1053 用spfa判断是否存在负环
MARK 用spfa判断是否存在负环 判断是否存在负环的方法有很多, 其中用spfa判断的方法是:如果存在一个点入栈两次,那么就存在负环. 细节想想确实是这样,按理来说是不存在入栈两次的如果边权值为正 ...
- POJ 3259 Wormholes(bellman_ford,判断有没有负环回路)
题意:John的农场里field块地,path条路连接两块地,hole个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts.我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj3259 Wormholes【Bellman-Ford或 SPFA判断是否有负环 】
题目链接:poj3259 Wormholes 题意:虫洞问题,有n个点,m条边为双向,还有w个虫洞(虫洞为单向,并且通过时间为倒流,即为负数),问你从任意某点走,能否穿越到之前. 贴个SPFA代码: ...
随机推荐
- PAT甲题题解-1002. A+B for Polynomials (25)-多项式相加
注意两点:1.系数也有可能加起来为负!!!一开始我if里面判断为>0导致有样例没过...2.如果最后所有指数的系数都为0,输出一个0即可,原本以为是输出 1 0 0.0... #include ...
- DataGridView不显示未绑定的列-AutoGenerateColumns
DataGridView绑定数据源时,会自动显示未绑定的列,怎么让其不显示未绑定的列呢? 设置AutoGenerateColumns属性即可 this.dataGridView1.AutoGenera ...
- Jmeter使用笔记之意料之外的
以下是在测试过程中按照以前loadrunner的思维来做的一点区别: 一.组织方式之setup 在用loadrunner做接口测试的时候如果不是针对login的测试,那么一般也会把login接口放到i ...
- Transactional注解中常用参数说明
@Transactional注解中常用参数说明 参 数 名 称 功 能 描 述readOnly ...
- 统计nginx日志的状态码
日志格式 61.159.140.123 - - [23/Aug/2014:00:01:42 +0800] "GET /favicon.ico HTTP/1.1" 404 \ &qu ...
- 浅谈JavaSript中的this
JavaScript的this对初学者来说一直是一个很头疼的问题,因为它的指向刚刚接触的时候往往觉得有点莫名奇妙,这篇博客用实例来概括一下,this代表什么以及如何改变函数的this. 在<Ja ...
- 用宏实现C/C++从非零整数开始的数组
相信大家在刚学习C/C++时,都会对数组下标从0开始编号有疑惑.尽管我是喜欢从0开始编号的“0党”,但是也有很多的人是喜欢从1开始编号. 意识到C/C++数组与指针具有一定的相似性后,我开始构思如何仿 ...
- Fire Net HDU - 1045(二分匹配)
把每一列中相邻的 . 缩为一个点 作为二分图的左边 把每一行中相邻的 . 缩为一个点 作为二分图的右边 然后求最大匹配即可 这题用匈牙利足够了...然而..我用了hk...有点大材小用的感觉// ...
- 洛谷SP16580 QTREE7 - Query on a tree VII(LCT,multiset)
洛谷题目传送门 思路分析 维护子树最值还是第一次写QwQ 因为子树的最值会变化,所以不能简单地把最值记下来,还要维护一个平衡树,把每个子树的最大值扔进去,来资磁插入.删除和查询最值. 然后我就懒得手写 ...
- CRM 2013发邮件的插件报错Cannot open Sql Encryption Symmetric Key because Symmetric Key password does not exist in Config DB
解决方法: 1. 依次打开Settings->Data management –> Data Encryption 然后在上面红框里填上任意一个key即可.