bellman-ford算法(判断有没有负环)
#include <iostream>
#include <vector>
#include<string>
#include<cstring>
using namespace std;
# define ll long long
# define maxn 1000+10
# define inf 0x3f3f3f3f
int n,m,t;
double mg;
struct node
{
int to;
double lv;
double yon;
node(int w,double t1,double t2)
{
to=w;
lv=t1;
yon=t2;
}
};
vector<node>wakaka[maxn];
double dis[maxn];
bool spfa()
{
for(int i=1; i<=n; i++)dis[i]=0;
dis[t]=mg;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
int len=wakaka[j].size();
for(int k=0; k<len; k++)
{
node temp=wakaka[j][k];
if((dis[j]-temp.yon)*temp.lv>dis[temp.to])
{
dis[temp.to]=(dis[j]-temp.yon)*temp.lv;
if(i==n)return true;
}
}
}
}
return false;
for(int i=1; i<=n; i++)//判断负环
{
if(dis[q[i].to]>dis[i]+wakaka[q[i]].cost)
break;
}
}
int main()
{
while(cin>>n>>m>>t>>mg)
{
for(int i=1; i<=n; i++)
{
wakaka[i].clear();
}
for(int i=1; i<=m; i++)
{
int t1,t2;
double s1,s2,w1,w2;
cin>>t1>>t2>>s1>>w1>>s2>>w2;
wakaka[t1].push_back(node(t2,s1,w1));
wakaka[t2].push_back(node(t1,s2,w2));
}
if(spfa())cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
bellman-ford算法(判断有没有负环)的更多相关文章
- poj3259Wormholes (Bellman_Ford/SPFA/Floyed算法判断是否存在负环)
题目链接:http://poj.org/problem?id=3259 题目大意:一个图,有n个顶点,其中有m条边是双向的且权值为为正,w条边是单向的且权值为负,判断途中是否存在负环,如果有输出YES ...
- 使用spfa算法判断有没有负环
如果存在最短路径的边数大于等于点数,就有负环 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你判断图中是否存在负权回路. 输入格式 第一行包含整数n和m. 接下来m行每行 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- POJ 3259 Wormholes(最短路,判断有没有负环回路)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 24249 Accepted: 8652 Descri ...
- vijos1053 用spfa判断是否存在负环
MARK 用spfa判断是否存在负环 判断是否存在负环的方法有很多, 其中用spfa判断的方法是:如果存在一个点入栈两次,那么就存在负环. 细节想想确实是这样,按理来说是不存在入栈两次的如果边权值为正 ...
- POJ 3259 Wormholes(bellman_ford,判断有没有负环回路)
题意:John的农场里field块地,path条路连接两块地,hole个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts.我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj3259 Wormholes【Bellman-Ford或 SPFA判断是否有负环 】
题目链接:poj3259 Wormholes 题意:虫洞问题,有n个点,m条边为双向,还有w个虫洞(虫洞为单向,并且通过时间为倒流,即为负数),问你从任意某点走,能否穿越到之前. 贴个SPFA代码: ...
随机推荐
- PHP学习笔记2
PHP Switch语句 用于根据多个不同条件执行不同动作.如果不在每个条件后加break,将会输出所有结果. <?php $language="java"; switch( ...
- Redis学习笔记之入门基础知识——其他特性
1.订阅(subscribe)与发布(publish) 用户订阅某一个频道,频道发布新的信息时,会将信息告知用户 2.数据安全 1) 快照持久化(时间点转储,实质是数据副本) 操作:SAVA. ...
- BlogPublishTool - 博客发布工具
BlogPublishTool - 博客发布工具 这是一个发布博客的工具.本博客使用本工具发布. 本工具源码已上传至github:https://github.com/ChildishChange/B ...
- 20135234mqy-——信息安全系统设计基础第十四周学习总结
第九章 虚拟存储器 主要作用: 将主存看作是一个存储在磁盘上的地址空间的高速缓存,在主存中只保护活动的区域,并根据需要在磁盘和主存之间来回传送数据: 为每个进程提供了一致的地址空间,从而简化了存储器管 ...
- 读C#程序
阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间 ...
- FINAL视频预发布
视频地址:http://v.youku.com/v_show/id_XMTg0MjMzNDIwNA==.html?spm=a2hzp.8253869.0.0&from=y1.7-2
- Python 零基础 快速入门 趣味教程 (咪博士 海龟绘图 turtle) 0. 准备工作
一.关于 Python Python 是全球使用人数增长最快的编程语言!它易于入门.功能强大,从 Web 后端 到 数据分析.人工智能,到处都能看到 Python 的身影. Python 有两个主要的 ...
- 服务端增加WCF服务全局异常处理机制
服务端增加WCF服务全局异常处理机制,任一WCF服务或接口方式出现异常,将统一调用WCF_ExceptionHandler.ProvideFault方法,因此不需要每个方法使用try catch写法. ...
- 一本通1669S-Nim
1669:S-Nim [输入样例] 2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0 [输出样例] ...
- djang-rest-framework学习-day1
1.老套路:setting 设置复制粘贴!,必要库的安装: 一些库安装失败的解决办法:在 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 上找到下载,然后使用用 ...