洛谷题目传送门

我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用。。。。。。

对每次询问都做一遍多重背包,显然T飞,就不考虑了

关键就在于每次询问如何利用重复的信息

我这么弱,当然是想不到容斥原理的啦

暂且先当成完全背包,每种硬币可使用无限次,预处理\(f\)数组,\(f[i]\)等于买价值\(i\)的东西的总方案数

然后就要从中减去不合法的。首先肯定会有一种硬币超额使用,第\(j\)中硬币等于说强制选了\(d_j+1\)个,剩下的依然随便选,那么第

\(j\)种硬币超额的不合法的方案数等于\(f[s-(d_j+1)*c_j]\),于是从答案里减去\(\sum_{j=1}^4f[s-(d_j+1)*c_j]\)

还要注意,第一种第二种都超额、第一种第三种都超额、第一种第四种都超额、第二种第三种都超额、第二种第四种都超额、第三种第四种都超额的方案在上一步中都被减了两次,所以额外都加一次回来。。。。。。(接着把容斥做下去就不说了)

复杂度降到\(O(4maxs+4×2^4tot)\),轻松通过

注意开longlong就好啦

#include<cstdio>
#define R register
typedef long long LL;
const int S=100009;
LL f[S]={1ll};
int main(){
R int c[4],d[4],tot,i,j,k,now,s,ss,tmp;
R LL ans;
for(j=0;j<4;++j)scanf("%d",&c[j]);
scanf("%d",&tot);
for(j=0;j<4;++j)
for(i=c[j];i<S;++i)
f[i]+=f[i-c[j]];//完全背包预处理
while(tot--){
for(j=0;j<4;++j)scanf("%d",&d[j]);
scanf("%d",&s);
ans=f[s];
for(ss=1;ss<=15;++ss){//二进制数枚举集合,容斥
now=s;
for(tmp=ss,j=k=0;tmp;tmp>>=1,++j)
if(tmp&1)k^=1,now-=(d[j]+1)*c[j];
//注意k的作用,判断奇偶
if(now>=0)k?ans-=f[now]:ans+=f[now];
}
printf("%lld\n",ans);
}
return 0;
}

洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)的更多相关文章

  1. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  2. 洛谷P1450 [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...

  3. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

  4. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  5. 【洛谷P1450】硬币购物

    题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...

  6. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  7. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  8. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  9. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

随机推荐

  1. 第39章 ETH—Lwip以太网通信

    第39章     ETH—Lwip以太网通信 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/ ...

  2. AbelSu教你搭建go语言开发环境

    go语言官网:https://golang.org/ windows:官网下载go1.6.windows-amd64.msi安装文件,安装位置选择默认C:\Go\安装结束后配置环境变量Path: C: ...

  3. Ubuntu系统上All-in-one部署OpenStack

    虚拟机软件:VMware Workstaion12 操作系统:Ubuntu14.04 1.修改Ubuntu14.04的apt源为国内的阿里源: cp /etc/apt/sources.list /et ...

  4. 20155235 《网络攻防》 实验八 Web基础

    20155235 <网络攻防> 实验八 Web基础 实验内容 Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表 ...

  5. python基础学习1-流程控制和判断

    python for循环和 if流程控制用法 Ages=22 for i in range(10): inputAges = int(input("输入年龄")) if input ...

  6. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

  7. [UOJ#276][清华集训2016]汽水[分数规划+点分治]

    题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...

  8. LeetCode 3Sum (Two pointers)

    题意 Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all ...

  9. MyBatis最初的程序解读---API

    API详解:            * 线程安全问题出现的条件        (1) 只有单例对象才可能出现线程安全问题        (2) 多线程环境,即多个线程会共享这个单例对象         ...

  10. Docker部署Registry私有镜像库

    拉取镜像 docker pull registry:2.6.2   生成账号密码文件,这里采用htpasswd方式认证 docker run --rm --entrypoint htpasswd re ...