【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
题面
题解
因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的、到达每个点的方案数就好了,那么矩阵大小就是\(10*n\)的(似乎只要\(9*n\))。构建转移矩阵之后直接矩阵快速幂即可。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 2009
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,T,N;
char g[20][20];
struct Matrix
{
int s[110][110];
void clear(){memset(s,0,sizeof(s));}
void init(){clear();for(int i=1;i<=N;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}A;
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;ret.clear();
for(int i=1;i<=N;++i)
for(int j=1;j<=N;++j)
for(int k=1;k<=N;++k)
ret[i][j]=(ret[i][j]+a[i][k]*b[k][j])%MOD;
return ret;
}
Matrix fpow(Matrix a,int b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int id(int t,int i){return t*n+i;}
int main()
{
n=read();T=read();N=n*10;
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
for(int i=0;i<9;++i)
for(int j=1;j<=n;++j)
A[id(i+1,j)][id(i,j)]+=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(g[i][j]!='0')
{
int w=g[i][j]-48;
A[id(9-w+1,i)][id(9,j)]+=1;
}
A=fpow(A,T);
printf("%d\n",A[id(9,1)][id(9,n)]);
return 0;
}
【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)的更多相关文章
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 1297 迷路(矩阵快速幂)
很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
随机推荐
- Docker的Mysql数据库:把数据存储在本地目录
Docker mysql 把数据存储在本地目录,很简单,只需要映射本地目录到容器即可 1.加上-v参数 $ docker run -d -e MYSQL_ROOT_PASSWORD=admin --n ...
- 【spring】spirng中的常用工具类
一.概述 很多时候,很多工具类其实spring中就已经提供,常用的工具类有: 参考:https://www.cnblogs.com/langtianya/p/3875103.html 内置的resou ...
- WPF LinkButton
<Button Margin="5" Content="Test" Cursor="Hand"> <Button.Temp ...
- 20155320 EXP8 Web基础
20155320 EXP8 Web基础 [基础问题回答] 什么是表单? 表单:可以收集用户的信息和反馈意见,是网站管理者与浏览者之间沟通的桥梁. 表单由文本域.复选框.单选框.菜单.文件地址域.按钮等 ...
- 20155331《网路对抗》Exp8 WEB基础实践
20155331<网路对抗>Exp8 WEB基础实践 基础问题回答 什么是表单 表单在网页中主要负责数据采集功能.一个表单有三个基本组成部分: 表单标签,这里面包含了处理表单数据所用CGI ...
- LNMP环境中WordPress程序伪静态解决方案
LNMP环境是目前我们国内站长使用的Linux VPS配置环境中使用较多的.作为新手我们很可能会看到老左类似的"LNMP安装教程"然后依葫芦画瓢的去安装VPS.我们是否有发现环境中 ...
- python 回溯法 子集树模板 系列 —— 16、爬楼梯
问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...
- ECMAScript6——Set数据结构
/** * 数据结构 Set */ // ----------------------------------------------------- /** * 集合的基本概念:集合是由一组无序且唯一 ...
- Security4:授予查看定义,执行SP和只读数据的权限
SQL Server数据库有完善的权限管理机制,对于存储过程,其权限分为查看定义,执行和修改,查看SP定义的权限是:VIEW DEFINITION ,执行存储过程的权限是:EXECUTE,修改SP的权 ...
- Redis发布订阅和事物笔记
Redis 发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下图展示了频道 cha ...