懒得复制题面,戳我戳我


Question:

(因为网上找不到好的翻译,这里简单复述一下)

告诉你\(m1+m2\)个约束条件,然后要你找出\(X_1-X_n\)这些数字,求满足要求的数列中不同的数字个数最多有多少个(exp:\(1,2,3,3,2\)里面就有三个不同的数)

Solution:

  • 首先的差分约束的连边很简单
for(int i=1;i<=m1;i++){
int x,y;scanf("%d%d",&x,&y);
add(x,y,1);add(y,x,-1);be[x]=be[y]=true;
}
for(int i=1;i<=m2;i++){
int x,y;scanf("%d%d",&x,&y);
add(x,y,0);be[x]=be[y]=true;
}
  • 然后我们要知道的就是在不同的强联通分量里面的数是不会相互影响的,因为如果不再一个强联通分量中一定是连的\(0\)边,所以我们就只用把\(0\)边连向的那个强联通分量全部变大一些就可以了
  • 所以我们就可以缩点(只用求出每个点在哪个强联通分量中就可以了),如果存在某个强连通中存在正环,就一定是不能找到一组满足的数值,输出\(NIE\)就好。
  • 然后我们就在每个不同的强联通分量中求最长路,这个强联通中的最多不同数值就是最长路数值\(+1\),然后把每个强联通的贡献相加就好了
  • PS:在求每个强联通时最好每个点作为初始点进行\(SPFA\),求出这个点为初始点时的最长路,所以嘞我们应该是可以用\(Floyd\)来做的。

我觉得我的代码打的很繁琐,所以看不看也无所谓了,另外我这个代码可以优化的就是可以在最后面求值是判断正环存在,应该可以适当减低时间复杂度


Code:

//It is coded by Ning_Mew on 4.2
#include<bits/stdc++.h>
using namespace std; const int maxn=607;
const int maxm=1e5; int n,m1,m2,INF,ans=0;
bool be[maxn];
int dist[maxn],vis[maxn],TT[maxn],vs[maxn];
int head[maxn],cnt=0,dfn[maxn],low[maxn],ct=0;
int color[maxn],num_color=0,team[maxn],last=1;
bool instack[maxn];
struct Edge{
int nxt,to,dis;
}edge[maxm*2];
bool choose[maxn]; void add(int from,int to,int dis){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
} bool SPFA(int k,int ls,int num){
queue<int>Q;while(!Q.empty())Q.pop();
Q.push(k);vis[k]=ls;be[k]=false;dist[k]=0;
TT[k]=1;vs[k]=ls;
while(!Q.empty()){
int u=Q.front();Q.pop();vis[u]=ls-1;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;be[v]=false; if(num==-1||color[v]==num);else continue; if(dist[v]<dist[u]+edge[i].dis){
dist[v]=dist[u]+edge[i].dis;
if(dist[v]>n)return false;
if(vis[v]!=ls){
vis[v]=ls;Q.push(v);
if(vs[v]!=ls){
vs[v]=ls; TT[v]=1;
}else{ TT[v]++; }
}
}
}
}return true;
}
void tarjan(int u){
dfn[u]=++ct;low[u]=ct;team[last]=u;last++;instack[u]=true;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
if(dfn[v]==0){tarjan(v); low[u]=min(low[u],low[v]);
}else{if(instack[v])low[u]=min(low[u],dfn[v]);}
}
int v=-100;
if(dfn[u]==low[u]){
num_color++;
do{v=team[--last];color[v]=num_color;instack[v]=false;
}while(v!=u);
}return;
}
int lls=1;
int find(int c){
int re=-0x5f,maxx=-0x5f,minn=0x5f;
for(int i=1;i<=n;i++){
if(color[i]!=c)continue;
//memset(vis,0,sizeof(vis));
memset(dist,-0x5f,sizeof(dist));
SPFA(i,++lls,color[i]);
maxx=-0x5f;minn=0x5f; //cout<<"-----"<<' '<<c<<endl;
//for(int j=1;j<=n;j++)
// cout<<j<<' '<<color[j]<<' '<<dist[j]<<endl; for(int j=1;j<=n;j++){
if(color[j]!=c)continue;
if(dist[j]==INF)continue;
maxx=max(maxx,dist[j]);
minn=min(minn,dist[j]);
}
re=max(re,maxx-minn);
//cout<<re<<endl;
}
//cout<<"ANS:"<<c<<' '<<re<<endl;
return re;
}
int main(){
scanf("%d%d%d",&n,&m1,&m2);
memset(be,false,sizeof(be));
for(int i=1;i<=m1;i++){
int x,y;scanf("%d%d",&x,&y);
add(x,y,1);add(y,x,-1);be[x]=be[y]=true;
}
for(int i=1;i<=m2;i++){
int x,y;scanf("%d%d",&x,&y);
add(x,y,0);be[x]=be[y]=true;
}
int ls=1;
memset(dist,-0x5f,sizeof(dist));
INF=dist[0];
for(int i=1;i<=n;i++){
if(be[i]){
if(SPFA(i,++ls,-1));else{printf("NIE\n");return 0;}
}
}
for(int i=1;i<=n;i++)if(dist[i]==INF)dist[i]=0;
//for(int i=1;i<=n;i++)cout<<"num:"<<i<<' '<<dist[i]<<endl;
//cout<<"SPFA finished"<<endl;
memset(dfn,0,sizeof(dfn));memset(low,0,sizeof(low));
for(int i=1;i<=n;i++){
if(dfn[i]==0)tarjan(i);
}
//for(int i=1;i<=n;i++)cout<<"num:"<<i<<' '<<color[i]<<endl;
memset(choose,false,sizeof(choose));
for(int i=1;i<=n;i++){
if(choose[ color[i] ]==true)continue;
choose[ color[i] ]=true;
int box=find(color[i]);ans+=(box+1);
//cout<<i<<' '<<color[i]<<' '<<box<<endl;
}
printf("%d\n",ans);
return 0;
}

【题解】 [POI2012]FES-Festival (差分约束)的更多相关文章

  1. [Poi2012]Festival 差分约束+tarjan

    差分约束建图,发现要在每个联通块里求最长路,600,直接O(n3) floyed #include<cstdio> #include<cstring> #include< ...

  2. bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd

    题目大意 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: 1.给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb 2.给出c,d (1&l ...

  3. BZOJ 3436: 小K的农场 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c  ->  b<=a-c ...

  4. BZOJ-2330-[SCOI2011]糖果(差分约束)

    Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  5. 【最短路·差分约束】洛谷P1250

    题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1..N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E, ...

  6. 【BZOJ3436】小K的农场 差分约束

    [BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...

  7. POJ3169:Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15705   Accepted: 7551 题目链接:http ...

  8. hdoj--1384--Intervals(差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  9. POJ1201Intervals(差分约束)

    题意 给出数轴上的n个区间[ai,bi],每个区间都是连续的int区间. 现在要在数轴上任意取一堆元素,构成一个元素集合V 要求每个区间[ai,bi]和元素集合V的交集至少有ci不同的元素 求集合V最 ...

随机推荐

  1. Hadoop详细配置教程

    windows下采用PuTTY或者Xshell连接远程主机 mac用终端连接远程linux主机:ssh user@hostname user 为 linux 服务器的管理员名称 hostname 为 ...

  2. 20155210 Exp2 后门原理与实践

    20155210 Exp2 后门原理与实践 1.Windows获得Linux Shell 在windows下,打开CMD,使用ipconfig指令查看本机IP 如图: 然后使用ncat.exe程序,n ...

  3. 20155227《网络对抗》Exp2 后门原理与实践

    20155227<网络对抗>Exp2 后门原理与实践 基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 在非官方网站下载软件时,后门很可能被捆绑在软件中. 攻击者利用欺 ...

  4. 20155321 《网络攻防》 Exp9 Web安全基础

    20155321 <网络攻防> Exp9 Web安全基础 基础问题 SQL注入攻击原理,如何防御 原理:在事先定义好的SQL语句的结尾上添加额外的SQL语句(感觉一般是或上一个永真式),以 ...

  5. 外部事件/中断的区别及EXTI->SWIER的用途

    EXTI_SWIER作用:允许我们通过程序控制就可以启动中断/事件线 1.产生事件的线路最终的产物是一个脉冲信号,这个脉冲信号可以给其他外设电路使用,比如定时器TIM.模拟数字转换器ADC等等. 2. ...

  6. ucosii笔记(一)

    .ucosii是按照优先级高低来切换任务执行顺序的抢占式实时系统. 2.在被高优先级的任务抢占时,这个任务会将寄存器的数据(xPSR.PC.LR.R0.R1.R2.R3.R12等的值)存放在该任务自己 ...

  7. 微信小程序云开发之云函数创建

    云函数 云函数是一段运行在云端的代码,无需管理服务器,在开发工具内编写.一键上传部署即可运行后端代码. 小程序内提供了专门用于云函数调用的 API.开发者可以在云函数内使用 wx-server-sdk ...

  8. Security6:查看授予的权限

    在SQL Server的安全体系中,权限分为服务器级别(Server-Level)和数据库级别(Database-Level),用户的权限分为两种形式,分别是直接授予的权限,以及由于加入角色而获得的权 ...

  9. flask_admin 笔记五 内置模板设置

    内建模板 Flask-Admin是使用jinja2模板引擎 1)扩展内建的模板 不要完全覆盖内置的模板,最好是扩展它们. 这将使您更容易升级到新的Flask-Admin版本. 在内部,Flask-Ad ...

  10. CEPH LIO iSCSI Gateway

    参考文档: Ceph Block Device:http://docs.ceph.com/docs/master/rbd/ CEPH ISCSI GATEWAY:http://docs.ceph.co ...