Description

满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中。由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一。 世界满汉全席协会是由能够料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师。为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在參赛的厨师之中,找到满汉料理界的明日之星。 大会的规则如下:每位參赛的选手可以得到n 种材料,选手可以自由选择用满式或是汉式料理将材料当成菜肴。大会的评审制度是:共有m 位评审员分别把关。每一位评审员对于满汉全席有各自独特的見解,但基本见解是,要有兩样菜色作为满汉全席的标志。如某评审认为,如果没有汉式东坡肉跟满式的涮羊肉锅,就不能算是满汉全席。但避免过于有主見的审核,大会规定一个评审员除非是在认为必备的两样菜色都没有做出來的狀况下,才能淘汰一位选手,否则不能淘汰一位參赛者。换句话說,只要參赛者能在这兩种材料的做法中,其中一个符合评审的喜好即可通过该评审的审查。如材料有猪肉,羊肉和牛肉时,有四位评审员的喜好如下表: 评审一 评审二 评审三 评审四 满式牛肉 满式猪肉 汉式牛肉 汉式牛肉 汉式猪肉 满式羊肉 汉式猪肉 满式羊肉 如參赛者甲做出满式猪肉,满式羊肉和满式牛肉料理,他将无法满足评审三的要求,无法通过评审。而參赛者乙做出汉式猪肉,满式羊肉和满式牛肉料理,就可以满足所有评审的要求。 但大会后來发现,在这样的制度下如果材料选择跟派出的评审员没有特别安排好的话,所有的參赛者最多只能通过部分评审员的审查而不是全部,所以可能会发生没有人通过考核的情形。如有四个评审员喜好如下表时,则不論參赛者采取什么样的做法,都不可能通过所有评审的考核: 评审一 评审二 评审三 评审四 满式羊肉 满式猪肉 汉式羊肉 汉式羊肉 汉式猪肉 满式羊肉 汉式猪肉 满式猪肉 所以大会希望有人能写一个程序來判断,所选出的m 位评审,会不会发生 没有人能通过考核的窘境,以便协会组织合适的评审团。

Input

第一行包含一个数字 K,代表测试文件包含了K 组资料。每一组测试资料的第一行包含兩个数字n 跟m(n≤100,m≤1000),代表有n 种材料,m 位评审员。为方便起見,材料舍弃中文名称而给予编号,编号分别从1 到n。接下來的m 行,每行都代表对应的评审员所拥有的兩个喜好,每个喜好由一个英文字母跟一个数字代表,如m1 代表这个评审喜欢第1 个材料透过满式料理做出來的菜,而h2 代表这个评审员喜欢第2 个材料透过汉式料理做出來的菜。每个测试文件不会有超过50 组测试资料

Output

每笔测试资料输出一行,如果不会发生没有人能通过考核的窘境,输出GOOD;否则输出BAD(大写字母)。

Sample Input

2

3 4

m3 h1

m1 m2

h1 h3

h3 m2

2 4

h1 m2

m2 m1

h1 h2

m1 h2

Sample Output

GOOD

BAD

Solution

每种菜只能选 \(\text{m}\) 或者 \(\text{h}\) ,而且存在二元组的限制关系,2-sat问题

按照2-sat的方式连边,如果 \(\text{m}x\) 与 \(\text{h}y\) 存在题目所述关系,那么将 \(\text{h}x\) 与 \(\text{h}y\) 连边,\(\text{m}x\) 与 \(\text{m}y\) 连边;其它同理,代表如果在某一种菜,没有选择当前的其中一个限制,那么另一个限制就一定要满足。一条边就代表一个推导

最后跑tarjan缩点,看一个点的两种状态是否在同一个强连通分量里就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=2000+10;
int T,n,m,e,cnt,LOW[MAXN],DFN[MAXN],Stack[MAXN],Visit_Num,Stack_Num,In_Stack[MAXN],Be[MAXN],to[MAXM<<1],beg[MAXN],nex[MAXM<<1];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline int num(char *s)
{
int res=0;
for(register int i=1,lt=strlen(s);i<lt;++i)res=(res<<3)+(res<<1)+(s[i]^'0');
return res;
}
inline void Tarjan(int x)
{
DFN[x]=LOW[x]=++Visit_Num;
In_Stack[x]=1;
Stack[++Stack_Num]=x;
for(register int i=beg[x];i;i=nex[i])
if(!DFN[to[i]])Tarjan(to[i]),chkmin(LOW[x],LOW[to[i]]);
else if(In_Stack[to[i]]&&DFN[to[i]]<LOW[x])LOW[x]=DFN[to[i]];
if(DFN[x]==LOW[x])
{
int temp;++cnt;
do{
temp=Stack[Stack_Num--];
In_Stack[temp]=0;
Be[temp]=cnt;
}while(temp!=x);
}
}
int main()
{
read(T);
while(T--)
{
read(n);read(m);
e=0;memset(beg,0,sizeof(beg));
Visit_Num=0;cnt=0;
memset(DFN,0,sizeof(DFN));
memset(LOW,0,sizeof(LOW));
for(register int i=1,u,v;i<=m;++i)
{
char s1[10],s2[10];scanf("%s%s",s1,s2);
u=(num(s1)<<1)+(s1[0]=='h'?0:1);
v=(num(s2)<<1)+(s2[0]=='h'?0:1);
insert(u^1,v);insert(v^1,u);
}
for(register int i=2;i<=(n<<1)+1;++i)
if(!DFN[i])Tarjan(i);
int mk=1;
for(register int i=1;i<=n;++i)
if(Be[i<<1]==Be[(i<<1)^1]){mk=0;break;}
if(!mk)puts("BAD");
else puts("GOOD");
}
return 0;
}

【刷题】BZOJ 1823 [JSOI2010]满汉全席的更多相关文章

  1. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

  2. bzoj 1823: [JSOI2010]满汉全席 && bzoj 2199 : [Usaco2011 Jan]奶牛议会 2-sat

    noip之前学的内容了,看到题竟然忘了怎么建图了,复习一下. 2-sat 大概是对于每个元素,它有0和1两种选择,必须选一个但不能同时选.这之间又有一些二元关系,比如x&y=1等等... 先把 ...

  3. bzoj 1823: [JSOI2010]满汉全席

    #include<iostream> #include<cstdio> #include<cstring> using namespace std; ],next[ ...

  4. bzoj 1823: [JSOI2010]满汉全席【2-SAT+tarjan】

    因为每种食材只有一份,所以两个评委的如果有要求同一种食材的两种做法就是不可行,用这个来建立2-SAT模型 然后跑tarjan判可行性即可 #include<iostream> #inclu ...

  5. 2-sat基础题 BZOJ 1823

    http://www.lydsy.com/JudgeOnline/problem.php?id=1823 1823: [JSOI2010]满汉全席 Time Limit: 10 Sec  Memory ...

  6. 【BZOJ】1823: [JSOI2010]满汉全席(2-sat)

    题目 传送门:QWQ 分析 2-sat模板(然而辣鸡如我还是调了好久) 代码 //bzoj 1823 2-sat #include <bits/stdc++.h> using namesp ...

  7. 1823: [JSOI2010]满汉全席 2-sat

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1823 思路 建图,缩点tarjan 判断impossible 代码 #include < ...

  8. 2-set 1823: [JSOI2010]满汉全席

    这个题告诉我变量循环使用,一定要赋好初值!!!!!! 一定要赋好初值!!!!!!一定要赋好初值!!!!!!一定要赋好初值!!!!!! #include<iostream>#include& ...

  9. bzoj1823 [JSOI2010]满汉全席(2-SAT)

    1823: [JSOI2010]满汉全席 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1246  Solved: 598[Submit][Status ...

随机推荐

  1. PuTTY+Xming实现X11的ssh转发

    1 需求分析 有些Linux程序还是不能完全离开窗口环境,或者说离开后操作不方便.其中Oracle就是这样一个程序,其工具程序大多数能够在纯命令行静默执行,如 OCI,DBCA,NetCA等,但是工作 ...

  2. Linux服务-openssh

    目录 1. 使用 SSH 访问远程命令行 1.1 OpenSSH 简介 1.2 SSH 版本 1.3 SSH 认证方式 1.4 openSSH 的工作模式 1.5 Secure Shell 示例 1. ...

  3. 20155207 EXP8 Web基础

    20155207 EXP8 Web基础 实验内容 (1)Web前端HTML (2)Web前端javascipt (3)Web后端:MySQL基础:正常安装.启动MySQL,建库.创建用户.修改密码.建 ...

  4. 20155325 Exp7 网络欺诈防范

    实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网站 (1分) (2)ettercap DNS spoof ...

  5. Visual Studio控制台程序输出窗口一闪而过的解决方法

    转载大牛的博客,自己也遇到了类似的问题,解决方法很详细,也很管用   刚接触 Visual Studio的时候大多数人会写个Hello World的程序试一下,有的人会发现执行结束后输出窗口会一闪而过 ...

  6. 深入浅出etcd系列 – 心跳和选举

    作者:宝爷 校对:DJ 1.绪论 etcd作为华为云PaaS的核心部件,实现了PaaS大多数组件的数据持久化.集群选举.状态同步等功能.如此重要的一个部件,我们只有深入地理解其架构设计和内部工作机制, ...

  7. torchvision 批量可视化图片

    1.1 简介 计算机视觉中,我们需要观察我们的神经网络输出是否合理.因此就需要进行可视化的操作. orchvision是独立于pytorch的关于图像操作的一些方便工具库. torchvision的详 ...

  8. 现已告别五险一金?迎来社保商保时代保险INSURAUNCE

    现已告别五险一金?迎来社保商保时代保险INSURAUNCE 经济工作会议提出,中国要降低社会保险费,研究精简归并"五险一金",可以说是为社保变革指明了大方向.未来,生育保险将与基本 ...

  9. 《Pro SQL Server Internals, 2nd edition》的CHAPTER 3 Statistics中的Introduction to SQL Server Statistics、Statistics and Execution Plans、Statistics Maintenance(译)

    <Pro SQL Server Internals> 作者: Dmitri Korotkevitch 出版社: Apress出版年: 2016-12-29页数: 804定价: USD 59 ...

  10. openstack 主机无法ping通instance,无法ssh到instance

    https://docs.openstack.org/zh_CN/user-guide/cli-nova-configure-access-security-for-instances.html 好不 ...