POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom /ZOJ 1291 MPI Maelstrom (最短路径)

Description

BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with a hierarchical communication subsystem. Valentine McKee's research advisor, Jack Swigert, has asked her to benchmark the new system.

``Since the Apollo is a distributed shared memory machine, memory access and communication times are not uniform,'' Valentine told Swigert. ``Communication is fast between processors that share the same memory subsystem, but it is slower between processors that are not on the same subsystem. Communication between the Apollo and machines in our lab is slower yet.''

``How is Apollo's port of the Message Passing Interface (MPI) working out?'' Swigert asked.

``Not so well,'' Valentine replied. ``To do a broadcast of a message from one processor to all the other n-1 processors, they just do a sequence of n-1 sends. That really serializes things and kills the performance.''

``Is there anything you can do to fix that?''

``Yes,'' smiled Valentine. ``There is. Once the first processor has sent the message to another, those two can then send messages to two other hosts at the same time. Then there will be four hosts that can send, and so on.''

``Ah, so you can do the broadcast as a binary tree!''

``Not really a binary tree -- there are some particular features of our network that we should exploit. The interface cards we have allow each processor to simultaneously send messages to any number of the other processors connected to it. However, the messages don't necessarily arrive at the destinations at the same time -- there is a communication cost involved. In general, we need to take into account the communication costs for each link in our network topologies and plan accordingly to minimize the total time required to do a broadcast.''

Input

The input will describe the topology of a network connecting n processors. The first line of the input will be n, the number of processors, such that 1 <= n <= 100.

The rest of the input defines an adjacency matrix, A. The adjacency matrix is square and of size n x n. Each of its entries will be either an integer or the character x. The value of A(i,j) indicates the expense of sending a message directly from node i to node j. A value of x for A(i,j) indicates that a message cannot be sent directly from node i to node j.

Note that for a node to send a message to itself does not require network communication, so A(i,i) = 0 for 1 <= i <= n. Also, you may assume that the network is undirected (messages can go in either direction with equal overhead), so that A(i,j) = A(j,i). Thus only the entries on the (strictly) lower triangular portion of A will be supplied.

The input to your program will be the lower triangular section of A. That is, the second line of input will contain one entry, A(2,1). The next line will contain two entries, A(3,1) and A(3,2), and so on.

Output

Your program should output the minimum communication time required to broadcast a message from the first processor to all the other processors.

Sample Input

5

50

30 5

100 20 50

10 x x 10

Sample Output

35

Http

POJ:https://vjudge.net/problem/POJ-1502

UVA:https://vjudge.net/problem/UVA-423

SCU:https://vjudge.net/problem/SCU-1068

UVALive:https://vjudge.net/problem/UVALive-5398

ZOJ:https://vjudge.net/problem/ZOJ-1291

Source

图论,最短路径

题目大意

在一个无向图中有n个点,现在从1号点开始传递信息,每传递到一个点,这个点也可以开始传递信息。一个点可以同时向多个方向传递。问使所有点收到信息的最短时间

解决思路

一开始看到这道题以为是最小生成树,但如果手动模拟一下,发现就是Dijkstra算法的过程,即:

寻找当前已经确定的点的集合相连的点中路径最小的,加入已确定集合,并用其修改其他点的最短路径。

这就是求最短路径的算法

关键要理解题意。

注意:ZOJ有多组数据

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=100;
const int inf=147483647; int n;
int M[maxN][maxN];
int Dist[maxN];
bool solve[maxN]; int read(); int main()
{
int T;
//cin>>T;//ZOJ有多组数据
//for (int ti=1;ti<=T;ti++)
//{
cin>>n;
for (int i=1;i<=n;i++)
{
M[i][i]=0;
for (int j=1;j<i;j++)
{
M[i][j]=M[j][i]=read();
}
}
for (int i=1;i<=n;i++)
Dist[i]=M[1][i];
memset(solve,0,sizeof(solve));
for (int i=1;i<n;i++)
{
int id,mi=inf;
for (int j=1;j<=n;j++)
if ((solve[j]==0)&&(Dist[j]<mi))
{
mi=Dist[j];
id=j;
}
solve[id]=1;
for (int j=1;j<=n;j++)
if ((solve[j]==0)&&(Dist[id]+M[id][j]<Dist[j]))
{
Dist[j]=Dist[id]+M[id][j];
}
}
int Ans=0;
for (int i=1;i<=n;i++)
Ans=max(Ans,Dist[i]);
cout<<Ans<<endl;
//if (ti!=T)
// cout<<endl;//ZOJ还要调格式
//}
return 0;
} int read()
{
int x=0;
int k=1;
char ch=getchar();
while (((ch>'9')||(ch<'0'))&&(ch!='-')&&(ch!='x'))
ch=getchar();
if (ch=='x')//快速读入修改一下,如果是x就返回无穷大
return inf;
if (ch=='-')
{
k=-1;
ch=getchar();
}
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x*k;
}

POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom /ZOJ 1291 MPI Maelstrom (最短路径)的更多相关文章

  1. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  2. POJ 2251 Dungeon Master /UVA 532 Dungeon Master / ZOJ 1940 Dungeon Master(广度优先搜索)

    POJ 2251 Dungeon Master /UVA 532 Dungeon Master / ZOJ 1940 Dungeon Master(广度优先搜索) Description You ar ...

  3. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  4. POJ 1502 MPI Maelstrom(最短路)

    MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4017   Accepted: 2412 Des ...

  5. POJ 1502 MPI Maelstrom

    MPI Maelstrom Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) Total ...

  6. POJ 1502 MPI Maelstrom (最短路)

    MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6044   Accepted: 3761 Des ...

  7. POJ - 1502 MPI Maelstrom 路径传输Dij+sscanf(字符串转数字)

    MPI Maelstrom BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odys ...

  8. POJ 1502 MPI Maelstrom [最短路 Dijkstra]

    传送门 MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5711   Accepted: 3552 ...

  9. POJ 1502:MPI Maelstrom Dijkstra模板题

    MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6499   Accepted: 4036 Des ...

随机推荐

  1. POJ3278&&1426&&3126&&3087&&3414

    接上次的,标签是BFS专题 其实无论是Deepth还是Breadth都是Search 3278 又是撸过的题目 1426 找一个十进制数(我刚开始看样例以为是二进制数),使得它每一位上都是1或0,且是 ...

  2. Spark(Python) 从内存中建立 RDD 的例子

    Spark(Python) 从内存中建立 RDD 的例子: myData = ["Alice","Carlos","Frank"," ...

  3. JS关闭窗口而不提示

    使用js关闭窗口而不提示代码: window.opener = null; window.open( '', '_self' ); window.close();

  4. NodeJs学习一NodeJs初识

    一.前言 按照惯例,先扯淡,就因为这货,现在才有了各大公司招聘的全栈工程师,正是因为它,让以前只会写前端的人也能写起后端服务器代码来了.所以呢,你招一个会NodeJs的前端,它都能把后端干了,一个人干 ...

  5. 百炼1001: Exponentiation 解题

    链接:http://bailian.openjudge.cn/practice/1001/ 思路 乍一看是很简单的题目,但是答案必须高精度输出,因此需要手动实现一个高精度运算方法.如果直接使用int, ...

  6. OPPO A7X 刷机小结

    OPPO A7X 刷机小结: 概述:根据网上找到的教程(MTK模式刷机教程),没有成功.在QQ上询问一位提供刷机服务的大神,说是只有老版本才能刷. 操作步骤: 刷机工具: MediaTek SP Fl ...

  7. OD之修改文件标题(一)

    OD是逆向工程中的一个重要工具,逆向工程调试说明具体请参考:百度百科,OD介绍,当然就我了解而言,俗话就是破解软件,市面上的什么破解版,精简版啥的基本都是通过这种技术的,但是这并不能一概而论说逆向工程 ...

  8. Unity3D Shader 学习笔记(一):初识Shader

    第一节:图形处理器简史 GPU发展简史 GPU英文全称Graphic Procssing Unit. T&L变换和光照流水线 可编程GPU GPU的优点和缺点 第二节:Unity Shader ...

  9. dtcp格式定义

    common name type optional comment id string y Content id version string y DTCP version. "1.0&qu ...

  10. Linux内核分析——第一周学习笔记

    20135313吴子怡.北京电子科技学院 chapter 1 知识点梳理 第一节 存储程序计算机工作模型 1.冯诺依曼体系结构:即具有存储程序的计算机体系结构.目前大多数拥有计算和存储功能的设备(智能 ...