1C - A + B Problem II
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line consists of two positive integers, A and B. Notice that the integers are very large, that means you should not process them by using 32-bit integer. You may assume the length of each integer will not exceed 1000.
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line is the an equation "A + B = Sum", Sum means the result of A + B. Note there are some spaces int the equation. Output a blank line between two test cases.
Sample Input
2
1 2
112233445566778899 998877665544332211
Sample Output
Case 1:
1 + 2 = 3 Case 2:
112233445566778899 + 998877665544332211 = 1111111111111111110 // too young and didn't notice that
// "you should not process them by using 32-bit integer"
// and "Output a blank line between two test cases".
#include<stdio.h>
int main()
{
int a, b, t, i;
scanf("%d", &t);
for(i=;i<=t;i++)
{
scanf("%d %d", &a, &b);
printf("Case %d:\n", i);
printf("%d + %d = %d\n", a, b, a+b);
printf("\n");
}
return ;
}
Wrong Answer
// long int is also 32-bit integer.
代码省略
// 不用判断哪个数较长,只要记录答案的长度. 三个数组都要初始化为0!!!
#include<stdio.h>
#include<string.h> int reverse_add(int *a, int *b, int *c, int al, int bl)
{
int i, sum=, k, max;
if(al<bl) max=bl;
else max=al;
k=;
for(i=; i<max; i++)
{
*(c+i)=(*(a+i)+*(b+i)+k)%;
k=(*(a+i)+*(b+i)+k)/;
}
if(k!=)
{
*(c+i)=;
return max+;
}
else return max;
} int main()
{
char s1[], s2[];
int t, k, i, length_a, length_b, rmax;
scanf("%d", &t);
for(k=;k<=t;k++)
{
int a[]={}, b[]={}, c[]={}; /* 三个数组都要初始化 */
scanf("%s %s", s1, s2);
length_a=strlen(s1); length_b=strlen(s2);
for(i=; i<length_a; i++) a[i]=s1[length_a--i]-'';
for(i=; i<length_b; i++) b[i]=s2[length_b--i]-'';
rmax=reverse_add(a, b, c, length_a, length_b);
printf("Case %d:\n", k);
printf("%s + %s = ", s1, s2);
for(i=; i<rmax; i++) printf("%d", c[rmax--i]);
printf("\n");
if(t>&&k<t) printf("\n");
}
return ;
}
AC
1C - A + B Problem II的更多相关文章
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- nyoj 623 A*B Problem II(矩阵)
A*B Problem II 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 ACM的C++同学有好多作业要做,最头痛莫过于线性代数了,因为每次做到矩阵相乘的时候,大 ...
- HDU 1002 A + B Problem II
A + B Problem II Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16104 Accepted ...
- A + B Problem II
之前总是在查阅别人的文档,看着其他人的博客,自己心里总有一份冲动,想记录一下自己学习的经历.学习算法有一段时间了,于是想从算法开始自己的博客生涯O(∩_∩)O~~ 今天在网上看了一道大数相加(高精度) ...
- nyoj 103 A + B problem II
点击打开链接 A+B Problem II 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 I have a very simple problem for you. G ...
- hdu 1023 Train Problem II
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...
- HDU1002 -A + B Problem II(大数a+b)
A + B Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 杭电ACM(1002) -- A + B Problem II 大数相加 -提交通过
杭电ACM(1002)大数相加 A + B Problem II Problem DescriptionI have a very simple problem for you. Given two ...
- hdoj 1002 A + B Problem II
A + B Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
随机推荐
- 创建DLL动态链接库——模块定义法(def)
DLL模块定义法(Module-Definition File,即DEF):在VS家族IDE中,根据提示新增.def文件,如下: LIBRARY 关键字; mytestDll 库名; DLL_ADD ...
- C# 13位时间戳转换成标准时间C#代码
原地址:https://www.cnblogs.com/yixuehan/p/5559244.html /// <summary> /// 时间戳转换成标准时间 /// </summ ...
- PL/SQL Job
1. 鼠标右键点击 jobs 弹出 Create Job 对话框,如下图: 2. 在对话框中输入相应的值,如下图: 其中: What ——作业执行时将要调用的存储过 ...
- mongodb副本集的从库永久性设置setSlaveOk
今天在生产环境下面搭了一个mongo的副本集,但开发那边要求副本集读写分离. 坑爹的是每次上副本集的时候都要设置db.getMongo().setSlaveOk()才能访问数据.感觉很是苦逼. 后来开 ...
- 03_java基础(八)之static关键字与代码块
20\21.static关键字 /** * static关键字 * 1.用static修饰后的方法,称为静态方法. * 2.静态的方法特点,可以使用 类名.方法名称 调用方法 * 3.静态方法只能调用 ...
- JDBC连接各种数据库的方法,连接MySql,Oracle数据库
JDBC连接各种数据库的方法: JDBC编程步骤: 1.导入jar包 2.注册驱动 3.获取数据库连接对象 4.定义SQL语句 5.获得执行SQL语句对象statemnet 6.执行SQL语句 7.处 ...
- NPM安装依赖速度慢问题
[NPM安装依赖速度慢问题] npm config set registry http://registry.npm.taobao.org 参考:http://blog.csdn.net/rongbo ...
- Photoshop Keynote
[Photoshop Keynote] 1.Tab:隐藏.显示所有面板. 2.Sihft+Tab:隐藏.显示右侧面板. 3.F:全屏切换. 4.选择并遮住: 参考:http://www.51shipi ...
- 如何解决cacti的snmp error
第一,确定cacti所有的主机能ping通被监控主机:如果不能ping通,请确认网络配置和被监控主机的ip设置是否正确. 第二,如果能ping通,那么确认被监控主机是否启用snmpd服务: ps -e ...
- msf客户端渗透(十):社会工程学
启动社会工程学攻击组件 生成二维码攻击模块 输入你想生成二维码的url,这里做演示用www.baidu.com 二维码生成后,在这个路径下 生成u盘,DVD的多媒体攻击载荷 通过修改autorun.i ...