【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述
输入
输出
样例输入
2
2
31
样例输出
3
343812777493853
题解
费马小定理+矩阵乘法
傻逼题,根据费马小定理,指数在模 $p-1$ 意义下相等时幂数相等。
因此求出 $2^n$ 在模 $p-1$ 意义下的结果,再用矩阵乘法维护fib数列,求矩阵的 $2^n\ \text{mod}\ (p-1)$ 次幂即可。
模数较大因此使用快(man)速乘,时间复杂度 $O(\log^2n)$ 。
#include <cstdio>
#include <cstring>
#define mod 1125899839733759
typedef long long ll;
inline ll mul(ll x , ll y , ll p)
{
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % p;
x = (x + x) % p , y >>= 1;
}
return ans;
}
inline ll pow(ll x , ll y , ll p)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = mul(ans , x , p);
x = mul(x , x , p) , y >>= 1;
}
return ans;
}
struct data
{
ll v[2][2];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i < 2 ; i ++ )
for(k = 0 ; k < 2 ; k ++ )
for(j = 0 ; j < 2 ; j ++ )
ans[i][j] = (ans[i][j] + mul(v[i][k] , a[k][j] , mod)) % mod;
return ans;
}
data operator^(ll y)
{
data x = *this , ans;
ans[0][0] = ans[1][1] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
}A;
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
ll n;
scanf("%lld" , &n) , n = pow(2 , n , mod - 1);
A[0][0] = 0 , A[0][1] = A[1][0] = A[1][1] = 1 , A = A ^ n;
printf("%lld\n" , A[1][0]);
}
return 0;
}
【bzoj5118】Fib数列2 费马小定理+矩阵乘法的更多相关文章
- Fib数列2 费马小定理+矩阵乘法
题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘
- [bzoj5118]Fib数列2_费马小定理_矩阵乘法
Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...
- bzoj5118: Fib数列2(费马小定理+矩阵快速幂)
题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
M斐波那契数列 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- HDOJ 5667 Sequence//费马小定理 矩阵快速幂
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- LightOJ 1419 – Necklace Polya计数+费马小定理求逆元
题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...
随机推荐
- 同步IO和异步IO的区别
首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO.非阻塞IO.IO服用 ...
- Flutter - JSON to Dart,一个json转dart实体的网站
如你所见,一个json转dart实体的网站,https://javiercbk.github.io/json_to_dart/
- kettle学习笔记(四)——kettle输入步骤
一.输入步骤概述 输入步骤主要分为以下几类: • 生成记录/自定义常量 • 获取系统信息 • 表输入 • 文本文件输入 • XML 文件输入 • Json输入 • 其他输入步骤 二.生成记录和自定义常 ...
- Python3入门(六)——函数式编程
一.高阶函数 1.可以通过变量指向函数,达到类似别名的效果: >>> f = abs >>> f(-10) 10 2.函数的参数可以是函数,也就是函数可以作为一个入 ...
- 汇编 ADD指令
知识点: 加法汇编指令ADD 一.加法指令 ADD(Addition) 格式 格式: ADD A,B //A=A+B; 功能: 两数相加 . OPRD1为任一通用寄存器或存储器操作数,可以是任意一个 ...
- 使用 Vue.js 2.0+ Vue-resource 模仿百度搜索框
使用 Vue.js 2.0 模仿百度搜索框 <!DOCTYPE html> <html> <head> <meta charset="utf-8&q ...
- 您需要来自XXX的权限才能对此文件夹进行更改
解决办法: cmd命令:del/f/s/q 文件夹
- nova状态同步
服务初始化阶段 nova-compute服务启动时调用manager中的host初始化函数 self.manager.init_host() 在host初始化函数中完成如下操作: #初始化libvir ...
- Hive的一些理解
首先谈一下关于hive和hbase的区别的疑问(完全不是一个东西): 本质上来说hive和hbase没什么关系,虽然都是表,查数据等,但是他们根本就不是一个层面的东西 hive就是一个rapduce的 ...
- VMware在Centos7上配置静态IP的方法
使用NAT模式 在这里记下192.168.161.2 进入系统,为系统自动分配一个ip 记录下 192.168.161.129 进入网络管理器配置文件目录 cd /etc/sysconfig/netw ...