题目描述

Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2)
现给出N,求Fib(2^n).

输入

本题有多组数据。第一行一个整数T,表示数据组数。
接下来T行每行一个整数N,含义如题目所示。
n≤10^15, T≤5

输出

输出共T行,每行一个整数为所求答案。
由于答案可能过大,请将答案mod 1125899839733759后输出

样例输入

2
2
31

样例输出

3
343812777493853


题解

费马小定理+矩阵乘法

傻逼题,根据费马小定理,指数在模 $p-1$ 意义下相等时幂数相等。

因此求出 $2^n$ 在模 $p-1$ 意义下的结果,再用矩阵乘法维护fib数列,求矩阵的 $2^n\ \text{mod}\ (p-1)$ 次幂即可。

模数较大因此使用快(man)速乘,时间复杂度 $O(\log^2n)$ 。

#include <cstdio>
#include <cstring>
#define mod 1125899839733759
typedef long long ll;
inline ll mul(ll x , ll y , ll p)
{
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % p;
x = (x + x) % p , y >>= 1;
}
return ans;
}
inline ll pow(ll x , ll y , ll p)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = mul(ans , x , p);
x = mul(x , x , p) , y >>= 1;
}
return ans;
}
struct data
{
ll v[2][2];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i < 2 ; i ++ )
for(k = 0 ; k < 2 ; k ++ )
for(j = 0 ; j < 2 ; j ++ )
ans[i][j] = (ans[i][j] + mul(v[i][k] , a[k][j] , mod)) % mod;
return ans;
}
data operator^(ll y)
{
data x = *this , ans;
ans[0][0] = ans[1][1] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
}A;
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
ll n;
scanf("%lld" , &n) , n = pow(2 , n , mod - 1);
A[0][0] = 0 , A[0][1] = A[1][0] = A[1][1] = 1 , A = A ^ n;
printf("%lld\n" , A[1][0]);
}
return 0;
}

【bzoj5118】Fib数列2 费马小定理+矩阵乘法的更多相关文章

  1. Fib数列2 费马小定理+矩阵乘法

    题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘

  2. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  3. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  4. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  5. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  6. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  7. HDOJ 5667 Sequence//费马小定理 矩阵快速幂

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...

  8. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. LightOJ 1419 – Necklace Polya计数+费马小定理求逆元

    题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...

随机推荐

  1. Leetcode——413. 等差数列划分

    题目描绘:题目链接 题目中需要求解一个数组中等差数组的个数,这个问题可以利用动态规划的思路来分析. 三步骤: 1:问题归纳.题目需要求解等差数列的和,我们可以用一个数组保存前i个元素可以构成的等差数列 ...

  2. Android 关于在ScrollView中加上一个ListView,ListView内容显示不完全(总是显示第一项)的问题的两种简单的解决方案

    是这样的哈: 有这样一个需求: 1.显示一个界面,界面上有一个列表(ListView),列表上面有一个可以滚动的海报. 2.要求在ListView滚动的过程中,ListView上面的海报也可以跟着Li ...

  3. DQN(Deep Reiforcement Learning) 发展历程(一)

    目录 马尔可夫理论 马尔可夫性质 马尔可夫过程(MP) 马尔可夫奖励过程(MRP) 值函数(value function) MRP求解 马尔可夫决策过程(MDP) 效用函数 优化的值函数 贝尔曼等式 ...

  4. day31

    今日内容 在python中使用TCP协议的客户端与服务端进行通信 服务端代码: ############################################################ ...

  5. 使用fastjson,gson解析null值的时候键保留

    由于业务需求...所以查阅资料,总结如下: 使用gson实现方法:只需要把new Gson()改为: new GsonBuilder().serializeNulls().create(); 就可以了 ...

  6. c# 解析百度图片搜索结果json中objURL图片原始地址

    // http://image.baidu.com/search/acjson?tn=resultjson_com&ipn=rj&ct=201326592&fp=result& ...

  7. ORM框架-SQLAchemy使用

    一.ORM简介 orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型的 ...

  8. 20155233 Exp1 PC平台逆向破解(5)M

    Exp1 PC平台逆向破解(5)M 实践一 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 步骤 1.cp pwn1 pwn20155233拷贝pwn1文件,命名为pwn201 ...

  9. ubuntu 12.04 桌面版关闭图形界面

    对于12.04的ubuntu桌面系统,如果想在开机的时候直接进入字符界面,那可以: 编辑文件 /etc/init/lightdm.conf,在第12行附近,原句“ and runlevel [!06] ...

  10. PowerBI开发 第八篇:查询参数

    在PowerBI Desktop中,用户可以定义一个或多个查询参数(Query Parameter),参数的功能是为了实现PowerBI的参数化编程,使得Data Source的属性.替换值和过滤数据 ...