【BZOJ 1563】 (四边形优化、决策单调性)
1563: [NOI2009]诗人小G
Time Limit: 100 Sec Memory Limit: 64 MB
Submit: 2611 Solved: 840Description
Input
Output
对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arrange"(不包含引号)。每个输出后面加"--------------------"Sample Input
4
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poetSample Output
108
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。HINT
总共10个测试点,数据范围满足:
测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。Source
【分析】
BZOJ1010玩具装箱的加强版。这里是^p不是平方。
这个是经典的1D/1D形式?【所谓1D/1D动态规划,指的是状态数为O(n),每一个状态决策量为O(n)的动态规划方程。】

证明自己化式子啊。。
然后就是决策单调的意思,最优取值点不断右移。


这个为什么我觉得写栈有点尴尬【要二分两次?】,双向链表就很好啊~~
st[i]表示i这个点的决策区间的起始位置,结束位置为nt的起始的前一位或n。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
#define LD long double
#define Maxn 100010
const long double INF=1e18; char s[];
LD a[Maxn],f[Maxn],len[Maxn],sm[Maxn],L;
int lt[Maxn],nt[Maxn],st[Maxn],P; LD qpow(LD x,int b)
{
if(x<) x=-x;
LD ans=1.0;
while(b)
{
if(b&) ans*=x;
x*=x;
b>>=;
}
return ans;
} LD cal(int i,int j)
{
return f[j]+qpow(sm[i]-sm[j]+(LD)i-(LD)j-1.0-L,P);
} bool check(int mid,int x,int y)
{
return cal(mid,x)>=cal(mid,y);
} int n;
int ffind(int l,int r,int x,int y)
{
int ans=n+;
while(l<=r)
{
int mid=(l+r)>>;
if(check(mid,x,y)) ans=mid,r=mid-;
else l=mid+;
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
cin>>n>>L>>P;sm[]=;
for(int i=;i<=n;i++)
{
scanf("%s",s);len[i]=(LD)strlen(s);
sm[i]=sm[i-]+len[i];
}
for(int i=;i<=n;i++) f[i]=INF+,st[i]=n+,lt[i]=i-,nt[i]=i+;
f[]=;st[]=;
int now=;
for(int i=;i<=n;i++)
{
while(st[nt[now]]<=i) now=nt[now];
f[i]=cal(i,now);
while(st[lt[i]]>i)
{
if(check(st[lt[i]],lt[i],i))
{
lt[i]=lt[lt[i]];
nt[lt[i]]=i;
}
else break;
}
st[i]=ffind(st[lt[i]],n,lt[i],i);
if(st[i]>n) nt[lt[i]]=nt[i],lt[nt[i]]=lt[i];
}
if(f[n]>INF) printf("Too hard to arrange\n");
else cout<<(LL)f[n]<<endl;
printf("--------------------\n");
}
return ;
}
2017-04-26 10:06:39
【BZOJ 1563】 (四边形优化、决策单调性)的更多相关文章
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- [CF1101F]Trucks and Cities:分治优化决策单调性
分析 好像是有一个叫这个名字的算法,链接. 令\(f[i][j][k]\)表示一辆每公里耗油量为\(1\)的货车从\(i\)到\(j\)中途加\(k\)次油最小的油箱容量.枚举所有的起点和中途加油的次 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- hdu 2829(四边形优化 && 枚举最后一个放炸弹的地方)
Lawrence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 四边形优化dp
理解: http://blog.renren.com/share/263498909/1064362501 http://www.cnblogs.com/ronaflx/archive/2011/03 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- dp优化---四边形不等式与决策单调性
四边形不等式 定理1: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b,c,d(a<=b<=c<=d),并且w(a,d)+w(b,c)>=w(a,c)+w(b ...
- 决策单调性优化dp
决策单调性: 对于一些dp方程,经过一系列的猜想和证明,可以得出,所有取的最优解的转移点(即决策点)位置是单调递增的. 即:假设f[i]=min(f[j]+b[j]) (j<i) 并且,对于任意 ...
随机推荐
- 如何通过卡面标识区分SD卡的速度等级
现在很多设备都可以插存储卡,而比较流行的就是SD(Secure Digital Memory Card)卡和Micro SD(原名TF,Trans-flash Card )卡,这两种卡主要就是尺寸不同 ...
- centos内存自动清理脚本及限制tomcat内存占用
使用crontab定时每天自动清理系统内存 00 00 * * * /root/Cached.sh [root@localhost ~]# cat Cachec.sh #! /bin/bash# ca ...
- spring框架学习(一)入门
spring 入门--IOC 1.导入jar包 4 + 1 : 4个核心(beans.core.context.expression) + 1个依赖(commons-loggins...jar) ...
- shell 流程结构
if 判断语句 if [ $a == $b ] then echo "等于" else echo "不等于" fi case分支选择 case $xs in ) ...
- 小程序登录、微信网页授权(Java版)
首先呢,“登录”.“授权”.“授权登录”,是一样的意思,不用纠结. 写小程序授权登录的代码前,需要了解清楚openid与unionid的区别,这里再简单介绍一下: 腾讯有个 “微信·开放平台”,只有企 ...
- Hive笔记之严格模式(strict mode)
Hive有一个严格模式,在严格模式下会对可能产生较大查询结果的语句做限制,禁止其提交执行. 一.切换严格模式 查看当前的模式: hive> set hive.mapred.mode; hive. ...
- atom使用markdown
atom使用markdown 最近因为不喜欢博客园自身带的编辑工具,所以尝试使用markdown,目前只是想简单的把标题和内容分的开一些,以后在慢慢熟悉吧 1.atom上安装markdown 在没有外 ...
- mysql主从复制跳过复制错误【转】
跳过复制错误 mysql因为binlog机制问题,有些时候会出现从库重放sql执行失败的情况,特别是旧的STATEMENT模式最容易出现这种情况(因为函数和存储过程等原因),这也是为什么强调使用mix ...
- springboot---->集成mybatis开发(一)
这里面我们介绍一下springboot与mybatis的集成,主要完成了mybatis的真分页.一个成熟的人往往发觉可以责怪的人越来越少,人人都有他的难处. springboot简单集成mytbati ...
- 【前端vue开发】vue开发总结

