Carmichael Numbers 

An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography. Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.

However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.

Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:

If a number passes the Fermat test several times then it is prime with a high probability.

Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.

In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella. As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.

Input

The input will consist of a series of lines, each containing a small positive number 
n
 ( 
2 < 
n
 < 65000). A number 
n
 = 0 will mark the end of the input, and must not be processed.

Output

For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.

Sample Input

1729
17
561
1109
431
0

Sample Output

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

题意:判断一个数是不是Carmichael数。

如果一个数不是素数,且对于任意的2< a <n满足方程 ,则称n是Carmichael数;否则n就不是Carmichael数。

这个题的关键是求快速幂。

#include<stdio.h>
#include<string.h>
#include<math.h>
#define LL long long
int a[66000];
void judge_prime() /*筛法求素数*/
{
int i,j,m=sqrt(65010+0.5);
memset(a,0,sizeof(a));
for(i=2;i<=m;i++)
{
if(!a[i]) /*素数为0*/
{
for(j=i*i;j<65010;j+=i)
a[j]=1; /*非素数为1*/
}
}
}
LL pow_mod(LL a,LL n,LL m) /*递归求快速幂*/
{
if(n==0) return 1;
LL x=pow_mod(a,n/2,m);
LL ans=x*x%m;
if(n%2==1) ans=ans*a%m;
return ans;
}
int main()
{
judge_prime();
LL i,n;
bool flag;
while(~scanf("%lld",&n)&&n)
{
if(!a[n])
{
printf("%lld is normal.\n",n);
continue;
}
flag=true;
for(i=2;i<n;i++)
{
if(pow_mod(i,n,n)!=i)
{
flag=false;
break;
}
}
if(flag)
printf("The number %lld is a Carmichael number.\n",n);
else
printf("%lld is normal.\n",n);
}
return 0;
}

UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)的更多相关文章

  1. POJ3641-Pseudoprime numbers(快速幂取模)

    题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...

  2. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

  3. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  4. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  7. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  8. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  9. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

随机推荐

  1. 解决Windows 7删除执行过的 EXE、Bat文件有延迟的问题

    解决了困扰已久的问题,真是大快人心啊! Win7删除exe文件刷新重现及删除慢问题解决方法 - DragonCheng的专栏 - 博客频道 - CSDN.NET Win7删除exe文件刷新重现及删除慢 ...

  2. C#实现对文件目录的实时监控

    本文主要描述如何通过C#实现实时监控文件目录下的变化,包括文件和目录的添加,删除,修改和重命名等操作. 首先,我们需要对.net提供的FileSystemWatcher类有所了解.我有些懒,找了MSD ...

  3. 将矩阵转化为LibSvm需要的格式

    function svmtransform(A)[m,n]=size(A); fid = fopen('A.txt','w');%写入文件路径for i=1:m    temp1 = A(i,2:n) ...

  4. 【跟我一起学Python吧】Python 多线程

    其实自我感觉Python的多线程很类似于Java的多线程机制,但是比JAVA的多线程更灵活.在早期的Python多线程实现中,采用了thread模块.例如: from time import ctim ...

  5. Matlab文件操作

    1.  Matlab文件操作主要有三个步骤:首先打开文件,然后对文件进行读写操作,最后要关闭文件. 2.  fid=fopen(文件名,打开方式) 'r' 只读,文件必须存在(缺省的打开方式) 'w' ...

  6. Apache Maven 入门

    Apache Maven 入门篇 ( 上 ) Apache Maven 入门篇 ( 下 ) ~$mvn archetype:generate -DgroupId=com.mycompany.hello ...

  7. 在fedora20下面手动为自己的安装程序创建桌面图标

    (博客园-番茄酱原创) 在/usr/share/applications/下面创建destktop文件,用于产生桌面图标 创建文件:touch android-eclipse.desktop 编辑文件 ...

  8. linux 切换c++版本

    删除gcc-4.6的软连接文件/usr/bin/gcc.(只是删除软连接) 命令:sudo rm /usr/bin/gcc 然后建一个软连接,指向gcc-4.4. 命令:sudo ln -s /usr ...

  9. 从零教你如何获取hadoop2.4源码并使用eclipse关联hadoop2.4源码

    从零教你如何获取hadoop2.4源码并使用eclipse关联hadoop2.4源码http://www.aboutyun.com/thread-8211-1-1.html(出处: about云开发) ...

  10. 从一个开发的角度看负载均衡和LVS(转)

    原文:http://blog.hesey.net/2013/02/introduce-to-load-balance-and-lvs-briefly.html 在大规模互联网应用中,负载均衡设备是必不 ...