Carmichael Numbers 

An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography. Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.

However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.

Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:

If a number passes the Fermat test several times then it is prime with a high probability.

Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.

In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella. As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.

Input

The input will consist of a series of lines, each containing a small positive number 
n
 ( 
2 < 
n
 < 65000). A number 
n
 = 0 will mark the end of the input, and must not be processed.

Output

For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.

Sample Input

1729
17
561
1109
431
0

Sample Output

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

题意:判断一个数是不是Carmichael数。

如果一个数不是素数,且对于任意的2< a <n满足方程 ,则称n是Carmichael数;否则n就不是Carmichael数。

这个题的关键是求快速幂。

#include<stdio.h>
#include<string.h>
#include<math.h>
#define LL long long
int a[66000];
void judge_prime() /*筛法求素数*/
{
int i,j,m=sqrt(65010+0.5);
memset(a,0,sizeof(a));
for(i=2;i<=m;i++)
{
if(!a[i]) /*素数为0*/
{
for(j=i*i;j<65010;j+=i)
a[j]=1; /*非素数为1*/
}
}
}
LL pow_mod(LL a,LL n,LL m) /*递归求快速幂*/
{
if(n==0) return 1;
LL x=pow_mod(a,n/2,m);
LL ans=x*x%m;
if(n%2==1) ans=ans*a%m;
return ans;
}
int main()
{
judge_prime();
LL i,n;
bool flag;
while(~scanf("%lld",&n)&&n)
{
if(!a[n])
{
printf("%lld is normal.\n",n);
continue;
}
flag=true;
for(i=2;i<n;i++)
{
if(pow_mod(i,n,n)!=i)
{
flag=false;
break;
}
}
if(flag)
printf("The number %lld is a Carmichael number.\n",n);
else
printf("%lld is normal.\n",n);
}
return 0;
}

UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)的更多相关文章

  1. POJ3641-Pseudoprime numbers(快速幂取模)

    题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...

  2. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

  3. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  4. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  7. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  8. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  9. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

随机推荐

  1. UVALive 4763

    一开始,没敢写,感觉会超时...其实就是暴力搜索.DFS #include<iostream> #include<stdio.h> #include<string.h&g ...

  2. JAVA中的数据结构——集合类(序):枚举器、拷贝、集合类的排序

    枚举器与数据操作 1)枚举器为我们提供了访问集合的方法,而且解决了访问对象的“数据类型不确定”的难题.这是面向对象“多态”思想的应用.其实是通过抽象不同集合对象的共同代码,将相同的功能代码封装到了枚举 ...

  3. 对unsigned int和int进行移位操作的区别

    1. 无符号整数 unsigned int 对unsigned int进行移位操作时,最高位不会有任何特殊性. 无符号整数必须使用%u来打印 #include <stdio.h> int ...

  4. Running a Remote Desktop on a Windows Azure Linux VM (远程桌面到Windows Azure Linux )-摘自网络(试了,没成功 - -!)

                              A complete click-by-click, step-by-step video of this article is available ...

  5. mysql 错误解决

    1. Error Code: 1175. You are using safe update mode and you tried to update a table without a WHERE ...

  6. 执行原始的 SQL 查询

    The Entity Framework Code First API includes methods that enable you to pass SQL commands directly t ...

  7. Web开发人员需知的Web缓存知识

    最近的译文距今已有4年之久,原文有一定的更新.今天踩着前辈们的肩膀,再次把这篇文章翻译整理下.一来让自己对web缓存的理解更深刻些,二来让大家注意力稍稍转移下,不要整天HTML5, 面试题啊叨啊叨的~ ...

  8. Gym 100507I Traffic Jam in Flower Town (模拟)

    Traffic Jam in Flower Town 题目链接: http://acm.hust.edu.cn/vjudge/contest/126546#problem/I Description ...

  9. AppDelegate 、UIApplication 的用法

    转载自  http://blog.chinaunix.net/uid-26768267-id-3300042.html //AppDelegate.h 头文件 #import <UIKit/UI ...

  10. 用 JavaScript 修改样式元素

    利用 <style> 元素,我们可以在网页中嵌入样式表.如果需要动态增加 <style> 元素,似乎可以用如下的 JavaScript 代码: var style = docu ...