R语言语法笔记
## 1. 数据输入 ##
a$b # 数据框中的变量
a = 15 # 赋值
a <- 15 # 赋值
a = c(1,2,3,4,5) # 数组(向量)
b = a[1] # 数组下标,从1开始
b = a[1:5] # 子数组
b = a[-2] # 子数组:扣除第2个的子数组
b = a[c(1,3)] # 子数组:访问第1,3个元素
b = c(a0,a1,a2) # 连接多个数组
a = rep(c(1,2,3,4),each=8) # 生成重复数列,支持每个重复和整个重复
a = seq(from=1,to=4,by=1) # 生成等差数列
b = cbind(a0,a1,a2,a3) # 按列合并,生成二维数组
b = a[,1] # 取第1列
b = a[1:4,1]
b = a[,c(1,3,4)]
a = vector(length=8) # 生成向量
a = matrix(1:20, nrow=8,ncol=4) # 生成矩阵
colnames(a) = c("A","B","C","D") # 列名称。!! 函数作为左值
b = as.matrix(cbind(a1,a2,a3)) # 利用cbind直接生成矩阵
b = data.frame(b1 = a1,b2 = a2) # 生成数据框
b = list(c(1,2,3),c("a","b","c","d"),matrix(nrow=2,ncol=2)) # 生成散列
b = a$c == 1 # 生成一个用于筛选的向量 !!较难理解
d = a[b,0] # 生成符合条件的子集
d = a[a$c == 1,]
b = order(a$c) # 生成一个用于排序的向量 !!较难理解
a[b,] # 排序结果
b = merge(a1,a2,by = "Sample",all = "TRUE") # join两个数据框
a$fb = factor(a$b) # 因子化
tapply(X=a$b,INDEX=a$c,FUN=mean) # 对所有子集作函数运算
sapply(a,FUN=mean) # 对所有列作函数运算,输出向量
lapply(a,FUN=mean) # 对所有列作函数运算,输出列表
summary(a) # 计算所有列的基本统计信息
table(a$b) # 计算列联表
table(a$b,a$c)
paste("a","b",sep=",") # 连接字符串
##2. 载入和输出数据 ##
b = read.table(file="C:/data.txt",header=TRUE,dec=".") # 读取CSV数据
library(RODBC) # 载入ODBC工具
odbcConnect("MyDb.mdb") # 连接ODBC数据库
b = sqlFetch(channel,"MyTable") # 取表
write.table(a,file="temp.txt",sep=" ",quote = FALSE, append=FALSE,na="NA") # 输出
## 3. 绘图 ##
plot(x=a$b,y=a$c,xlab="X",ylab="Y",main="Title",xlim=c(0,10),ylim=c(0,100),pch=1,col=2,cex=1.5) # 散点图,参数多支持向量
lines() # 曲线
jpeg(file="any.jpg") # 打开一个jpg文件
dev.off() # 关闭图片文件
## 4. 语法 ##
for (i in 1:10) {do sth...} # for循环
a = function(a,b="n") { # 构造函数
do sht...
}
## A. 函数 ##
# 运算 #
colSums() # 按列求和
max()
median() # 中位数
min()
paste() # 连接字符串
rowSums() # 按行求和
solve() # 矩阵求拟
sqrt() #
sum() # na.rm=TRUE 忽略NA值
t() # 矩阵转置
# 数据定义 #
attach() # 添加数据框为路径
as.matrix() # 作为矩阵
as.data.frame() # 作为数据框
c() # 连接向量
cbind() # 按列连接,生成二维
colnames() # 列名
detach() # 去除数据框作为路径
dim() # 行数、列数
factor() # 因子化
is.matrix() # 是否矩阵
is.data.frame() # 是否数据框
lapply() # 对所有列作函数运算,输出列表
matrix() # 生成矩阵
names() # 查看list的元素名称
nrow() # 行数
ncol() # 列数
order() # 数据框排序
rbind() # 按行连接
rep() # 重复数列。 each 自身重复
rm() # 删除变量
rownames() # 行名
sapply() # 对所有列作函数运算,输出向量
seq() # 等差数列
str() # 数据框的每个属性
summary() # 计算所有列的基本统计信息
table() # 计算列联表
tapply() # 对所有子集作函数运算
unique() # 查找剔重值
vector() # 生成向量
# 环境与载入、输出数据
read.table() # 读取数据文件
scan() # 读取数据文件
setwd() # 设置当前工作目录
write.table() # 输出文件
# 绘图
jpeg() # 打开JPG图片
plot() # 散点图
dev.off() # 关闭图片文件
R语言语法笔记的更多相关文章
- C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com
原文:C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | I ...
- R语言语法基础二
R语言语法基础二 重塑数据 增加行和列 # 创建向量 city = c("Tampa","Seattle","Hartford"," ...
- R语言语法基础一
R语言语法基础一 Hello world #这里是注释 myString = "hello world" print(myString) [1] "hello world ...
- R语言学习笔记:因子
R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor) ...
- R语言学习笔记:字符串处理
想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit&q ...
- R语言学习笔记:向量
向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4] ...
- R语言学习笔记︱Echarts与R的可视化包——地区地图
笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...
- R语言学习笔记(五)绘图(1)
R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令. 本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建. 首先,让我们来看一个简单例子: ...
- R语言学习笔记1——R语言中的基本对象
R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心 ...
随机推荐
- [MODx] 10. Using Babel for Muti-languages support
1. Go to 'Extras' -> download and install 'Babel'. 2. Set up '.htaccess' file, currently, we set ...
- iOS图片元数据的读写
图片的本身就是各种图像数据的载体,包含着像素.色彩.灰度等各种数据信息,除此之外,还包含着曝光数据.日期.位置.版权等元数据(metadata). 何为图片元数据 元数据包括许多重要的信息,常用的有E ...
- sql server char nchar nvarchar varchar之間的區別
char存储固定长度的字符串,最大长度为8000个字节. varchar存储可变长度的字符串.最大长度为8000个字节. nchar存储固定长度的Unicode字符串,最大长度为4000个字符. nv ...
- 慎用StringEscapeUtils.escapeHtml步骤
慎用StringEscapeUtils.escapeHtml方法[转] 推荐使用Apache commons-lang的StringUtils来增强Java字符串处理功能,也一直在项目中大量使用Str ...
- python中HTMLParser简单理解
找一个网页,例如https://www.python.org/events/python-events/,用浏览器查看源码并复制,然后尝试解析一下HTML,输出Python官网发布的会议时间.名称和地 ...
- android开发之路04(初级android工程师必会,你懂得!)
Android初级Android工程师重点掌握内容如下: 1.Android开发基础: ①UI界面设计: ②SQLite数据库: ③android四大组件: ④android网络编程: ⑤androi ...
- fstat - 读取文件相关信息
#fstat读取到的信息 ["dev"]=> int(16777220) ["ino"]=> int(66880002) ["mode&q ...
- PHP代码实现MySQL读写分离
关于MySQL的读写分离有几种方法:中间件,Mysql驱动层,代码控制 关于中间件和Mysql驱动层实现Mysql读写分离的方法,今天暂不做研究, 这里主要写一点简单的代码来实现由PHP代码控制MyS ...
- [转载]传智播客_SQL入门
原文地址:传智播客_SQL入门作者:happylonger SQL * 数据定义语言 DDL * 数据操作语言 DML * 查询和更新指令构成了 SQL 的 DML 部分: * SELECT - 从 ...
- PeopleReady--办公学习类App产品
PeopleReady是能使人(公司或组织里的员工)快速Ready(经验+知识)的学习系统.对员工的好处是:- 可以迅速Ready,尽快符合岗位要求,尽快有Performance,尽快对公司有价值,从 ...