## 1. 数据输入 ##
a$b         # 数据框中的变量
a = 15      # 赋值
a <- 15     # 赋值
a = c(1,2,3,4,5)    # 数组(向量)
b = a[1]            # 数组下标,从1开始
b = a[1:5]          # 子数组
b = a[-2]           # 子数组:扣除第2个的子数组
b = a[c(1,3)]       # 子数组:访问第1,3个元素
b = c(a0,a1,a2)     # 连接多个数组
a = rep(c(1,2,3,4),each=8)  # 生成重复数列,支持每个重复和整个重复
a = seq(from=1,to=4,by=1)   # 生成等差数列
b = cbind(a0,a1,a2,a3)      # 按列合并,生成二维数组
b = a[,1]           # 取第1列
b = a[1:4,1]
b = a[,c(1,3,4)]
a = vector(length=8)        # 生成向量
a = matrix(1:20, nrow=8,ncol=4) # 生成矩阵
colnames(a) = c("A","B","C","D")    # 列名称。!! 函数作为左值
b = as.matrix(cbind(a1,a2,a3))      # 利用cbind直接生成矩阵
b = data.frame(b1 = a1,b2 = a2)     # 生成数据框
b = list(c(1,2,3),c("a","b","c","d"),matrix(nrow=2,ncol=2))     # 生成散列
b = a$c == 1    # 生成一个用于筛选的向量 !!较难理解
d = a[b,0]      # 生成符合条件的子集
d = a[a$c == 1,]
b = order(a$c)  # 生成一个用于排序的向量 !!较难理解
a[b,]           # 排序结果
b = merge(a1,a2,by = "Sample",all = "TRUE")     # join两个数据框
a$fb = factor(a$b)  # 因子化
tapply(X=a$b,INDEX=a$c,FUN=mean)    # 对所有子集作函数运算
sapply(a,FUN=mean)  # 对所有列作函数运算,输出向量
lapply(a,FUN=mean)  # 对所有列作函数运算,输出列表
summary(a)          # 计算所有列的基本统计信息
table(a$b)          # 计算列联表
table(a$b,a$c)
paste("a","b",sep=",")  # 连接字符串 

##2. 载入和输出数据 ##
b = read.table(file="C:/data.txt",header=TRUE,dec=".")  # 读取CSV数据
library(RODBC)      # 载入ODBC工具
odbcConnect("MyDb.mdb") # 连接ODBC数据库
b = sqlFetch(channel,"MyTable")     # 取表
write.table(a,file="temp.txt",sep=" ",quote = FALSE, append=FALSE,na="NA")  # 输出

## 3. 绘图 ##
plot(x=a$b,y=a$c,xlab="X",ylab="Y",main="Title",xlim=c(0,10),ylim=c(0,100),pch=1,col=2,cex=1.5) # 散点图,参数多支持向量
lines()         # 曲线
jpeg(file="any.jpg")    # 打开一个jpg文件
dev.off()       # 关闭图片文件

## 4. 语法 ##
for (i in 1:10) {do sth...} # for循环
a = function(a,b="n") {     # 构造函数
    do sht...
}

## A. 函数  ##
# 运算 #
colSums()   # 按列求和
max()
median()    # 中位数
min()
paste()     # 连接字符串
rowSums()   # 按行求和
solve()     # 矩阵求拟
sqrt()      #
sum()       # na.rm=TRUE 忽略NA值
t()         # 矩阵转置

# 数据定义 #
attach()    # 添加数据框为路径
as.matrix() # 作为矩阵
as.data.frame() # 作为数据框
c()         # 连接向量
cbind()     # 按列连接,生成二维
colnames()  # 列名
detach()    # 去除数据框作为路径
dim()       # 行数、列数
factor()    # 因子化
is.matrix() # 是否矩阵
is.data.frame() # 是否数据框
lapply()    # 对所有列作函数运算,输出列表
matrix()    # 生成矩阵
names()     # 查看list的元素名称
nrow()      # 行数
ncol()      # 列数
order()     # 数据框排序
rbind()     # 按行连接
rep()       # 重复数列。 each 自身重复
rm()        # 删除变量
rownames()  # 行名
sapply()    # 对所有列作函数运算,输出向量
seq()       # 等差数列
str()       # 数据框的每个属性
summary()   # 计算所有列的基本统计信息
table()     # 计算列联表
tapply()    # 对所有子集作函数运算
unique()    # 查找剔重值
vector()    # 生成向量

# 环境与载入、输出数据
read.table()    # 读取数据文件
scan()      # 读取数据文件
setwd()     # 设置当前工作目录
write.table()   # 输出文件

# 绘图
jpeg()      # 打开JPG图片
plot()      # 散点图
dev.off()   # 关闭图片文件

R语言语法笔记的更多相关文章

  1. C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com

    原文:C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | I ...

  2. R语言语法基础二

    R语言语法基础二 重塑数据 增加行和列 # 创建向量 city = c("Tampa","Seattle","Hartford"," ...

  3. R语言语法基础一

    R语言语法基础一 Hello world #这里是注释 myString = "hello world" print(myString) [1] "hello world ...

  4. R语言学习笔记:因子

    R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor) ...

  5. R语言学习笔记:字符串处理

    想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit&q ...

  6. R语言学习笔记:向量

    向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4] ...

  7. R语言学习笔记︱Echarts与R的可视化包——地区地图

    笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...

  8. R语言学习笔记(五)绘图(1)

      R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令.   本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建.   首先,让我们来看一个简单例子: ...

  9. R语言学习笔记1——R语言中的基本对象

    R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心 ...

随机推荐

  1. PAT 1006

    1006. Sign In and Sign Out (25) At the beginning of every day, the first person who signs in the com ...

  2. Top 10 Algorithms for Coding Interview--reference

    By X Wang Update History:Web Version latest update: 4/6/2014PDF Version latest update: 1/16/2014 The ...

  3. jdbc_连接数据库

    1.例一: package com.vince.jdbc; import java.sql.Connection;import java.sql.DriverManager;import java.s ...

  4. Android(java)学习笔记122:TabActivity使用

    1.首先我们要知道TabActivity是结合TabHost使用的,于是我们自然而然要说明一下TabHost 所谓的TabHost是提供选项卡(Tab页)的窗口视图容器. 此对象包含两个子对象: 一个 ...

  5. angularjs学习总结一(表达式、指令、模型)

    一:自执行匿名函数 (function(){ /*code*/})();自执行匿名函数:常见格式:(function() { /* code */ })();解释:包围函数(function(){}) ...

  6. java基础学习总结四(控制语句<顺序、选择、循环>、方法)

    一:结构控制语句 结构控制语句分为3种,顺序语句.选择语句.循环语句. 1:顺序语句 就是自上而下的执行程序,默认执行顺序. 2:选择语句 if结构语句:如果满足条件,则执行该语句. if...els ...

  7. 关于XML的DTD概述

    1 DTD概述 1.1 什么是DTD DTD(Document Type Definition),文档类型定义,用来约束XML文档.或者可以把DTD理解为创建XML文档的结构!例如可以用DTD要求XM ...

  8. [转]让你提升命令行效率的 Bash 快捷键

    生活在 Bash shell 中,熟记以下快捷键,将极大的提高你的命令行操作效率. 编辑命令 Ctrl + a :移到命令行首 Ctrl + e :移到命令行尾 Ctrl + f :按字符前移(右向) ...

  9. Lodash Filter

    var persons = [{name:'1',age:'20'}, {name:'2', age:'25'}];_.filter(persons, {'age': '25'}); //return ...

  10. jquery checkbox全选,全不选,反选方法,jquery checkbox全选只能操作一次

    jquery checkbox全选,全不选,反选方法, jquery checkbox全选只能操作一次, jquery checkbox全选只有第一次成功 >>>>>&g ...