#
# Minimal Sphinx configuration sample (clean, simple, functional)
# source mysql
{
type = mysql #数据库类型 #新服务器
sql_host = 192.168.0.0
sql_user = root
sql_pass = test
sql_db = test
sql_port = 3306 sql_query_pre = SET NAMES utf8
sql_query_pre = SET SESSION query_cache_type=OFF
} ########## 数据源统一放在一起 ##########
source indexLocation:mysql{
sql_query = SELECT a.location_id as id,a.location_id,a.location_name as `location_name`,a.location_name as `name`,a.location_bname,a.attach_id,a.showstatus,a.is_del,a.status,b.area_name as city_name FROM `ts_rdd_location` a LEFT JOIN `ts_rdd_area` b ON a.city_id = b.area_id
#sql_attr_string = name
sql_attr_uint = status
#sql_attr_timestamp = date_added
sql_query_info = SELECT * FROM `ts_rdd_location` WHERE location_id = $id } source indexNearby:mysql{
sql_query = SELECT a.product_id as id,a.product_id,a.product_name as `name`,a.product_name,a.num,a.num_sale,a.img,b.area_name as city_name FROM `ts_rdd_nearby_product` a LEFT JOIN `ts_rdd_area` b ON a.city_id = b.area_id
#sql_attr_string = name
#sql_attr_uint = status
#sql_attr_timestamp = date_added
sql_query_info = SELECT * FROM `ts_rdd_nearby_product` WHERE product_id = $id
} ########## 索引定义统一放在一起 ##########
index indexLocation
{
source = indexLocation #声明索引源
path = /usr/local/var/data/indexLocation #索引文件存放路径及索引的文件名。不要和其它索引名重名。
docinfo = extern #文档信息存储方式
mlock = 0 #缓存数据内存锁定
morphology = none #形态学(对中文无效)
min_word_len = 2 #索引的词最小长度
charset_type = utf-8
min_prefix_len = 0 #最小前缀
html_strip = 1
ngram_len = 1 #对于非字母型数据的长度切割
ngram_chars = U+3000..U+2FA1F #则会对每个中文,英文字词进行分割,速度会慢 #字符表,注意:如使用这种方式,则sphinx会对中文进行单字切分,即进行字索引。
#若要使用中文分词,必须使用其他分词插件如 coreseek,sfc
charset_table = 0..9, A..Z->a..z, _, a..z, U+410..U+42F->U+430..U+44F, U+430..U+44F
} index indexNearby
{
source = indexNearby #声明索引源
path = /usr/local/var/data/indexNearby #索引文件存放路径及索引的文件名。不要和其它索引名重名。
docinfo = extern #文档信息存储方式
mlock = 0 #缓存数据内存锁定
morphology = none #形态学(对中文无效)
min_word_len = 2 #索引的词最小长度
charset_type = utf-8
min_prefix_len = 0 #最小前缀
html_strip = 1
ngram_len = 1 #对于非字母型数据的长度切割
ngram_chars = U+3000..U+2FA1F #则会对每个中文,英文字词进行分割,速度会慢 #字符表,注意:如使用这种方式,则sphinx会对中文进行单字切分,即进行字索引。
#若要使用中文分词,必须使用其他分词插件如 coreseek,sfc
charset_table = 0..9, A..Z->a..z, _, a..z, U+410..U+42F->U+430..U+44F, U+430..U+44F
} ########## 索引器配置 ##########
indexer
{
mem_limit = 128M #内存限制
} ########## 索引器配置 ##########
searchd
{
listen = 9312 #监听端口,官方已在IANA获得正式授权的9312端口。以前版本默认的是3312。
log = /usr/local/sphinx/var/log/searchd.log #服务进程日志 ,一旦sphinx出现异常,基本上可以从这里查询有效信息
query_log = /usr/local/sphinx/var/log/query.log #客户端查询日志,笔者注:若欲对一些关键词进行统计,可以分析此日志文件
read_timeout = 5 #请求超时
max_children = 30 #同时可执行的最大searchd 进程数
pid_file = /usr/local/sphinx/var/searchd.pid #进程ID文
max_matches = 10000 # 查询结果的最大返回数
seamless_rotate = 1 # 是否支持无缝切换,做增量索引时通常需要
workers = threads # for RT to workbinlog_path
preopen_indexes = 1
unlink_old = 1
compat_sphinxql_magics = 0
}

sphinx配置文件继承的更多相关文章

  1. sphinx配置文件sphinx.conf参数详细说明

    sphinx配置文件sphinx.conf参数详细说明 sphinx.conf各个参数详细说明 # # Sphinx configuration file sample # # WARNING! Wh ...

  2. sphinx 配置文件全解析

    sphinx的配置文件是在配置的时候最容易出错的了: 我们先要明白几个概念: source:数据源,数据是从什么地方来的. index:索引,当有数据源之后,从数据源处构建索引.索引实际上就是相当于一 ...

  3. sphinx配置文件详解

    sphinx的配置文件是在配置的时候最容易出错的了: 我们先要明白几个概念: source:数据源,数据是从什么地方来的. index:索引,当有数据源之后,从数据源处构建索引.索引实际上就是相当于一 ...

  4. sphinx 配置文件全解析(转)

    sphinx的配置文件是在配置的时候最容易出错的了: 我们先要明白几个概念: source:数据源,数据是从什么地方来的. index:索引,当有数据源之后,从数据源处构建索引.索引实际上就是相当于一 ...

  5. Sphinx 配置文件的说明【备忘】

    ## 数据源src1 source src1 { ## 说明数据源的类型.数据源的类型可以是:mysql,pgsql,mssql,xmlpipe,odbc,python ## 有人会奇怪,python ...

  6. .Net 配置文件--继承ConfigurationSection实现自定义处理类处理自定义配置节点

    除了使用继承IConfigurationSectionHandler的方法定义处理自定义节点的类,还可以通过继承ConfigurationSection类实现同样效果. 首先说下.Net配置文件中一个 ...

  7. .Net 配置文件——继承ConfigurationSection实现自定义处理类处理自定义配置节点

    除了使用继承IConfigurationSectionHandler的方法定义处理自定义节点的类,还可以通过继承ConfigurationSection类实现同样效果. 首先说下.Net配置文件中一个 ...

  8. .Net 配置文件——继承ConfigurationSection实现自己定义处理类处理自己定义配置节点

    除了使用继承IConfigurationSectionHandler的方法定义处理自己定义节点的类.还能够通过继承ConfigurationSection类实现相同效果. 首先说下.Net配置文件里一 ...

  9. sphinx通过增量索引实现近实时更新

    一.sphinx增量索引实现近实时更新设置 数据库中的已有数据很大,又不断有新数据加入到数据库中,也希望能够检索到.全部重新建立索引很消耗资源,因为我们需要更新的数据相比较而言很少. 例如.原来的数据 ...

随机推荐

  1. UVa 10622 (gcd 分解质因数) Perfect P-th Powers

    题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...

  2. JQuery安全分析

    JQuery安全分析: JQuery的风险均来源于对输入的数据没有进行有效性检验.客户端的Javascript需要检验:来源于服务器的数据.来源于当前页面的用户输入,服务器端需要检验来源于用户端的数据 ...

  3. spring-webmvc 4.3.4 与 freemarker、easyui 整合

    一.所需lib包 二.web.xml配置 <?xml version="1.0" encoding="UTF-8"?> <web-app xm ...

  4. ORACLE DATAGURARD配置手记

    经过多次实践,参阅网上N多文章……最后还是配不成,可能本人悟性太低,无法体会高手的笔记.最终还是在前辈的帮助下完成.特用最平实的手法记录下来,以便如吾辈菜鸟能 看得懂. 运行Data Guard的条件 ...

  5. 【转】读取android根目录下的文件或文件夹

    原文网址:http://my.oschina.net/Ccx371161810/blog/287823 读取android根目录下的文件或文件夹 SDK的操作 读取android根目录下的文件或文件夹 ...

  6. 【转】 Homebrew – OSX下简单的包管理系统

    很多linux用户很喜欢 (Debian/Ubuntu)系列的apt包管理系统和(Redhat/Fedora)系列的yum包管理系统. 包括Windows用户都有多种方便的软件管理工具,如:360软件 ...

  7. 刑事案件的构成要素 zt

    论刑事案件的构成要素   马忠红 2013-03-22 14:05:33 来源:<中国人民公安大学学报:社会科学版>(京)2012年5期 [内容提要]刑事案件是由诸多要素构成的一个系 统. ...

  8. 使用C语言实现二维,三维绘图算法(2)-解析曲面的显示

    使用C语言实现二维,三维绘图算法(2)-解析曲面的显示 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...

  9. CSS换行:word-wrap、word-break和text-wrap区别

    一.word-wrap:允许对长的不可分割的单词进行分割并换行到下一行.(中英文处理效果一样) word-wrap有两个取值: 1.word-wrap: normal:只在允许的断字点换行(浏览器保持 ...

  10. C++11 并发指南------std::thread 详解

    参考: https://github.com/forhappy/Cplusplus-Concurrency-In-Practice/blob/master/zh/chapter3-Thread/Int ...