转自:http://blog.itpub.net/12199764/viewspace-1743145/

项目中有涉及趋势预测的工作,整理一下这3种拟合方法:
1、线性拟合-使用math
import math
def linefit(x , y):
    N = float(len(x))
    sx,sy,sxx,syy,sxy=0,0,0,0,0
    for i in range(0,int(N)):
        sx  += x[i]
        sy  += y[i]
        sxx += x[i]*x[i]
        syy += y[i]*y[i]
        sxy += x[i]*y[i]
    a = (sy*sx/N -sxy)/( sx*sx/N -sxx)
    b = (sy - a*sx)/N
    r = abs(sy*sx/N-sxy)/math.sqrt((sxx-sx*sx/N)*(syy-sy*sy/N))
    return a,b,r

if __name__ == '__main__':
    X=[ 1 ,2  ,3 ,4 ,5 ,6]
    Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51]
    a,b,r=linefit(X,Y)
    print("X=",X)
    print("Y=",Y)
    print("拟合结果: y = %10.5f x + %10.5f , r=%10.5f" % (a,b,r) )
#结果为:y =    0.97222 x +    1.59056 , r=   0.98591

1、线性拟合-使用numpy
import numpy as np
X=[ 1 ,2  ,3 ,4 ,5 ,6]
Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51]
z1 = np.polyfit(X, Y, 1)  #一次多项式拟合,相当于线性拟合
p1 = np.poly1d(z1)
print z1  #[ 1.          1.49333333]
print p1  # 1 x + 1.493

2、二次多项式拟合
import numpy

def polyfit(x, y, degree):
    results = {}
    coeffs = numpy.polyfit(x, y, degree)
    results['polynomial'] = coeffs.tolist()

# r-squared
    p = numpy.poly1d(coeffs)
    # fit values, and mean
    yhat = p(x)                         # or [p(z) for z in x]
    ybar = numpy.sum(y)/len(y)          # or sum(y)/len(y)
    ssreg = numpy.sum((yhat-ybar)**2)   # or sum([ (yihat - ybar)**2 for yihat in yhat])
    sstot = numpy.sum((y - ybar)**2)    # or sum([ (yi - ybar)**2 for yi in y])
    results['determination'] = ssreg / sstot #准确率
    return results

x=[ 1 ,2  ,3 ,4 ,5 ,6]
y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.2]
z1 = polyfit(x, y, 2)
print z1

3、对数函数拟合-这个是最难的,baidu上都找不到,google了半天才找到的。指数、幂数拟合啥的,都用这个,把func改写一下就行
from scipy import log as log print pcov
import numpy
from scipy import log
from scipy.optimize import curve_fit

def func(x, a, b):
    y = a * log(x) + b
    return y

def polyfit(x, y, degree):
    results = {}
    #coeffs = numpy.polyfit(x, y, degree)
    popt, pcov = curve_fit(func, x, y)
    results['polynomial'] = popt

# r-squared
    yhat = func(x ,popt[0] ,popt[1] )                         # or [p(z) for z in x]
    ybar = numpy.sum(y)/len(y)          # or sum(y)/len(y)
    ssreg = numpy.sum((yhat-ybar)**2)   # or sum([ (yihat - ybar)**2 for yihat in yhat])
    sstot = numpy.sum((y - ybar)**2)    # or sum([ (yi - ybar)**2 for yi in y])
    results['determination'] = ssreg / sstot

return results

x=[ 1 ,2  ,3 ,4 ,5 ,6]
y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51]
z1 = polyfit(x, y, 2)
print z1

用python的numpy作线性拟合、多项式拟合、对数拟合的更多相关文章

  1. python 基于numpy的线性代数运算

    import numpy as np A = [[1,2],[2,1]] np.linalg.inv(A)  #计算矩阵A的逆矩阵. #显示结果 [[-0.33333333 0.66666667] [ ...

  2. 使用python和numpy实现函数的拟合

    给出一个数组x,然后基于一个二次函数,加上一些噪音数据得到另一组数据y. 将得到的数组x,y,构建一个机器学习模型,采用梯度下降法,通过多次迭代,学习到函数的系数.使用python和numpy进行编程 ...

  3. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  4. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  5. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  6. [python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决

    这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所 ...

  7. python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

  8. python和numpy的版本、安装位置

    命令行下查看python和numpy的版本和安装位置 1.查看python版本 方法一: python -V 注意:‘-V‘中‘V’为大写字母,只有一个‘-’ 方法二: python --versio ...

  9. python之numpy的安装

    这是我第一次写博客,我的第一次打算送给python的numpy库的安装指导,这是我看到一位大神的博客后产生的启发,真是控制不住自己,必须得写一下. 第一次安装numpy浪费了我一个下午,结果还没安装好 ...

随机推荐

  1. PAT-乙级-1034. 有理数四则运算(20)

    1034. 有理数四则运算(20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 本题要求编写程序,计算2个有理 ...

  2. spoj 345

    DP  想了好久  还是看了一下题解.... f[i][j]表示i到j全部合并后的最小花费,f[i][j] = min{f[i][k]+f[k+1][j]+d[i][k]*d[k+1][j]} (i ...

  3. spoj 362

    规律还是比较好找的  大数除法 #include <cstdio> #include <cstring> int len,a[1000],q; int cc[] = {0,1, ...

  4. 安装Redis完整过程

    概述    首先报告一下我系统的版本: [root@firefish init.d]# cat /etc/issue 系统版本信息如下: 引用 CentOS release 6.4 (Final) K ...

  5. c缺陷与陷阱笔记-第三章 语义陷阱

    1.关于数组和数组指针 数组的名字默认是常量指针,值不能改变的,例如 int a[]={1,2,3,...},这个a的类型时int *,所以如果有int *p,那么a=p是合法的,其他的指针类型,例如 ...

  6. c++ 基础学习: 左值 概念cocos2d-x3.0的实际应用

    左值:概念baidu 1.2.6.2 与Cocos2d-x内存管理的结合 在2.x的使用场景中,CCArray和CCDictionary通常被分配在堆上,我们不得不需要考虑在适当的地方释放其内存.新的 ...

  7. dup和dup2函数以及管道的实现

    疑问:管道应该不是这样实现的,因为这要求修改程序的代码 dup和dup2也是两个非常有用的调用,它们的作用都是用来复制一个文件的描述符.它们经常用来重定向进程的stdin.stdout和stderr. ...

  8. 【HDOJ】4345 Permutation

    即求P1^n1+P2^n2 + ... + Pk^nk <= n,其中Pk为素数的所有可能组合.思路是DP.1~1000的素数就不到200个.dp[i][j]表示上式和不超过且当前最小素数为P[ ...

  9. poj 3080 Blue Jeans(水题 暴搜)

    题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...

  10. UVa 140 (枚举排列) Bandwidth

    题意较复杂,请参见原题=_=|| 没什么好说的,直接枚举每个排列就好了,然后记录最小带宽,以及对应的最佳排列. STL里的next_permutation函数真是好用. 比较蛋疼的就是题目的输入了.. ...