[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]PrI.6.1
Given a basis $U=(u_1,\cdots,u_n)$ not necessarily orthonormal, in $\scrH$, how would you compute the biorthogonal basis $\sex{v_1,\cdots,v_n}$? Find a formula that expresses $\sef{v_j,x}$ for each $x\in\scrH$ and $j=1,\cdots,k$ in terms of Gram matrices.
Soluton. Let $V=(v_1,\cdots,v_k)$, then $$\bex V^*U=I_n\lra U^*V=I_n. \eex$$ We may just set $v_i$ to be the solution of the linear system $U^*x=e_i$, where $e_i=(\underbrace{0,\cdots,1}_{i},\cdots, 0)^T$. Suppose now $$\bex x=\sum_{j=1}^n x_jv_j\in \scrH, \eex$$ then $$\bex \sef{v_i,x}=\sum_{j=1}^n \sef{v_i,v_j}x_j,\quad i=1,\cdots,n. \eex$$ And hence $$\bex \sex{\ba{cc} \sef{v_1,x}\\ \vdots\\ \sef{v_n,x} \ea}=\sex{\sef{v_i,v_j}}\sex{\ba{cc} x_1\\\vdots\\ x_n \ea}. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]PrI.6.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents
I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
随机推荐
- EXTJS 4.2 资料 控件之Window窗体添加html
//这里要跳转页面 var subWindow = new Ext.Window({ title: '窗口', width: width, height: height, modal: true,// ...
- 慎用ReentrantLock
前言: 代码简洁与性能高效无法两全其美,本文章专注于并发程序的性能,如果您追求代码简洁,本文章可能不太适合,本文章属于Java Concurrency in Practice读书笔记. 在java5中 ...
- bnuoj 1057 函数(模拟)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=1057 [题意]:给定x的值,带入f(x)求函数值 [题解]:注意第一个数的符号可能是'+',这里把我 ...
- 解决Cisco VPN Client:Reason 442: Failed to Enable Virtual Adapter VPN连接问题
大公司里肯定涉及不同地点的办公问题,这样VPN的使用就频繁了,今天遇到一个VPN连接问题,分享给大家,看一眼,以后不在这问题上耗费太多功夫. 在win7上连接vpn时抛出“failed to enab ...
- 【noi2013】【bz3244】树的计数
题目概括:给出树的dfs.bfs序 求树的期望高度 题解:由于我比较懒 先copy一段百度文库的题解~void copy(){我们可以发现,所求的树之所以会有很多种,是因为出现了这种情况:对于A.B, ...
- 1206: [HNOI2005]虚拟内存 - BZOJ
Description 操作系统中一种重要的存储管理技术就是虚拟内存技术.操作系统中允许进程同时运行,也就是并行.每个进程都有其相对独立的数据块(进程运行的过程中将对其进行读写操作).理想的情况下,这 ...
- 如何安装Favicon
如何安装Favicon favicon.ico图像放在根目录下(也可以是其他目录)在页面源文件的<head></head>标签之间插入 <link rel="s ...
- js常识
btnDelAll.Attributes.Add("onclick", "<script lunguage='javascript'>return windo ...
- hdu 4336 Card Collector 容斥原理
读完题目就知道要使用容斥原理做! 下面用的是二进制实现的容斥原理,详见:http://www.cnblogs.com/xin-hua/p/3213050.html 代码如下: #include< ...
- Photoshop:路径填充边缘虚化问题
怎么才能不让它虚化呢? 解决方案一: 1.同样画出路径 2.新建图层 3.回到路径面板,右击路径图层,选择“填充路径” 4.把“羽化”设置为0,取消选择“消除锯齿” 换个背景色看看效果:一点虚化都没 ...