Given a basis $U=(u_1,\cdots,u_n)$ not necessarily orthonormal, in $\scrH$, how would you compute the biorthogonal basis $\sex{v_1,\cdots,v_n}$? Find a formula that expresses $\sef{v_j,x}$ for each $x\in\scrH$ and $j=1,\cdots,k$ in terms of Gram matrices.

Soluton. Let $V=(v_1,\cdots,v_k)$, then $$\bex V^*U=I_n\lra U^*V=I_n. \eex$$ We may just set $v_i$ to be the solution of the linear system $U^*x=e_i$, where $e_i=(\underbrace{0,\cdots,1}_{i},\cdots, 0)^T$. Suppose now $$\bex x=\sum_{j=1}^n x_jv_j\in \scrH, \eex$$ then $$\bex \sef{v_i,x}=\sum_{j=1}^n \sef{v_i,v_j}x_j,\quad i=1,\cdots,n. \eex$$ And hence $$\bex \sex{\ba{cc} \sef{v_1,x}\\ \vdots\\ \sef{v_n,x} \ea}=\sex{\sef{v_i,v_j}}\sex{\ba{cc} x_1\\\vdots\\ x_n \ea}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]PrI.6.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents

    I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

随机推荐

  1. GDataXMLNode创建和解析XML

    GDataXMLNode创建xml: #import <Foundation/Foundation.h> 2 #import "GDataXMLNode.h" 3 4 ...

  2. JPA2 关于 PagingAndSortingRepository

    And --- 等价于 SQL 中的 and 关键字,比如 findByUsernameAndPassword(String user, Striang pwd): Or --- 等价于 SQL 中的 ...

  3. IOS 数组分组 Grouped NSArray

    NSMutableSet *set=[NSMutableSet set]; [_list enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BO ...

  4. UOJ Round #8 赴京赶考 解题报告

    算法零 $n,m \le 100, q \le 10$ 的话,直接给网格中的每一个格点都建一个点,然后该怎么最短路就怎么最短路,该怎么并查集+BFS就怎么并查集+BFS. 复杂度 $O(qnm)$,可 ...

  5. 解决VS如何同时打开两个工程(xp和win7)

    http://www.360doc.com/content/11/1020/00/7891073_157586269.shtml

  6. OneAPM x 腾讯 | OneAPM 技术公开课·深圳 报名:前端性能大作战!

    「 OneAPM 技术公开课」由应用性能管理第一品牌 OneAPM 发起,内容面向 IT 开发和运维人员.云集技术牛人.知名架构师.实践专家共同探讨技术热点. 11月28日,OneAPM 技术公开课第 ...

  7. CodeForces 299B Ksusha the Squirrel

    http://codeforces.com/problemset/problem/299/B 题意 :这个题挺简单的,就是说这个姑娘不喜欢走有石头的扇形,所以给你一个k的值,代表她一次可以跳多少扇形. ...

  8. Hardwood Species

    http://poj.org/problem?id=2418 #include<cstdio> #include<cstring> #include<string> ...

  9. http://blog.csdn.net/xyang81/article/details/7292380

    http://blog.csdn.net/xyang81/article/details/7292380

  10. SQLite入门与分析(二)---设计与概念(续)

    SQLite入门与分析(二)---设计与概念(续)   写在前面:本节讨论事务,事务是DBMS最核心的技术之一.在计算机科学史上,有三位科学家因在数据库领域的成就而获ACM图灵奖,而其中之一Jim G ...