题意:

给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小。

分析:

第一次听到“拆点法”这个名词。

把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的边。这样就保证了每个点最多经过一次。

其他有向边的容量也是1

然后求从起点到终点的流量为2(这样就保证了是两条路径)的最小费用流。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;
const int INF = ; struct Edge
{
int from, to, cap, flow, cost;
Edge(int u, int v, int c, int f, int w): from(u), to(v), cap(c), flow(f), cost(w) {}
}; struct MCMF
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn]; //是否在队列中
int d[maxn]; //Bellman-Ford
int p[maxn]; //上一条弧
int a[maxn]; //可改进量 void Init(int n)
{
this->n = n;
for(int i = ; i < n; ++i) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, cap, , cost));
edges.push_back(Edge(to, from, , , -cost));
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BellmanFord(int s, int t, int flow_limit, int& flow, int& cost)
{
for(int i = ; i < n; ++i) d[i] = INF;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF; queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = ;
for(int i = ; i < G[u].size(); ++i)
{
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
{
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) { Q.push(e.to); inq[e.to] = ; }
}
}
}
if(d[t] == INF) return false;
if(flow + a[t] > flow_limit) a[t] = flow_limit - flow;
flow += a[t];
cost += d[t] * a[t];
for(int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u]^].flow -= a[t];
}
return true;
} int MincostMaxflow(int s, int t, int flow_limit, int& cost)
{
int flow = ; cost = ;
while(flow < flow_limit && BellmanFord(s, t, flow_limit, flow, cost));
return flow;
}
}g; int main()
{
//freopen("in.txt", "r", stdin); int n, m;
while(scanf("%d%d", &n, &m) == && n)
{
g.Init(n*-);
//2~n-1 i和i'的编号分别为1~n-2 n~2n-3
for(int i = ; i <= n-; ++i) g.AddEdge(i-, n-+i, , );
for(int i = ; i < m; ++i)
{ //连接a'->b
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(a != && a != n) a += n-; else a--;
b--;
g.AddEdge(a, b, , c);
}
int cost;
g.MincostMaxflow(, n-, , cost);
printf("%d\n", cost);
} return ;
}

代码君

UVa 1658 (拆点法 最小费用流) Admiral的更多相关文章

  1. Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负

    /** 题目:Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负 链接:https://vjudge.net/problem/UVA-1161 ...

  2. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  3. UVa1658 Admiral(拆点法+最小费用流)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51253 [思路] 固定流量的最小费用流. 拆点,将u拆分成u1和u ...

  4. UVa 1658 - Admiral(最小费用最大流 + 拆点)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 1658 海军上将(拆点法+最小费用限制流)

    海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...

  6. uva 1658 Admiral (最小费最大流)

    uva 1658 Admiral 题目大意:在图中找出两条没有交集的线路,要求这两条线路的费用最小. 解题思路:还是拆点建图的问题. 首先每一个点都要拆成两个点.比如a点拆成a->a'.起点和终 ...

  7. UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流

    /** 题目:UVA1658 Admiral 链接:https://vjudge.net/problem/UVA-1658 题意:lrj入门经典P375 求从s到t的两条不相交(除了s和t外,没有公共 ...

  8. 【uva 1658】Admiral(图论--网络流 最小费用最大流)

    题意:有个N个点M个边的有向加权图,求1~N的两条不相交路径(除了起点和终点外没有公共点),使得权和最小. 解法:不相交?也就是一个点只能经过一次,也就是我后面博文会讲的"结点容量问题&qu ...

  9. 紫书 习题 11-4 UVa 1660 (网络流拆点法)

    这道题改了两天-- 因为这道题和节点有关, 所以就用拆点法解决节点的容量问题. 节点拆成两个点, 连一条弧容量为1, 表示只能经过一次. 然后图中的弧容量无限. 然后求最小割, 即最大流, 即为答案. ...

随机推荐

  1. [C#]Linq To Xml 介绍- 转

    LINQ to XML 类概述 LINQ to XML 旨在使 XML 名称尽可能简单.     XAttribute 类 XAttribute 表示一个 XML 属性. XCData 类 XCDat ...

  2. mysql 的数据文件

    mysql的数据文件 由于mysql的数据文件结构主要跟mysql的存储引擎相关,这里不做过多解释,具体查看各个引擎章节的内容 .首先上一段小辉老师的教程; 在MySQL 中每一个数据库都会在定义好( ...

  3. HTML教程XHTML教程:HTML标记嵌套使用技巧

    网页制作Webjx文章简介:WEB标准-HTML元素嵌套. 先来看以下这样一段代码: <ul>    <li><h4><a href="" ...

  4. Centos——rpm和yum

    间歇性的学习了centos的一些使用,发现一段时间不操作,就会忘掉其中的概念或者操作方式方法,于是在此总结一下. 一.问题描述 首先,把一个我最常忘记的概念性的东西在这里记录一下: 什么是yum,什么 ...

  5. float2int

    flaot转int时,会直接舍弃小数为,但是当把f所在的地址的数据当成int解析时,就是另外的情况了. #include<iostream> using namespace std; in ...

  6. android 解析XML方式(一)

    在androd手机中处理xml数据时很常见的事情,通常在不同平台传输数据的时候,我们就可能使用xml,xml是与平台无关的特性,被广泛运用于数据通信中,那么在android中如何解析xml文件数据呢? ...

  7. 2016,除了 DevOps,企业还应该知道 CMDB!

    CMDB 是 Configuration Management Database(配置管理数据库)的简称,CMDB 存储与管理企业 IT 架构中设备的各种配置信息,它与所有服务支持和服务交付流程都紧密 ...

  8. Mutex vs Semaphore

    What are the differences between Mutex vs Semaphore? When to use mutex and when to use semaphore? Co ...

  9. 在IDEA上用python来连接集群上的hive

    1.在使用Python连接hive之前需要将hive中的文件拷贝到自己创建python项目中 cp -r apache-hive--bin/lib/py  /home/jia/Desktop 2.把h ...

  10. MySQL.. ERROR! The server quit without updating PID file问题解决

    不小心将服务器OS给重启了,再启动数据库的时候,出现了很奇怪的问题 [root@dev run]# service mysql restart ERROR! MySQL server PID file ...