一. 题目
Exponentiation
Time Limit: 500MS   Memory Limit: 10000K
Total Submissions: 156373   Accepted: 38086

Description

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25.

Input

The
input will consist of a set of pairs of values for R and n. The R value
will occupy columns 1 through 6, and the n value will be in columns 8
and 9.

Output

The
output will consist of one line for each line of input giving the exact
value of R^n. Leading zeros should be suppressed in the output.
Insignificant trailing zeros must not be printed. Don't print the
decimal point if the result is an integer.

Sample Input

95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12

Sample Output

548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201

Hint

If you don't know how to determine wheather encounted the end of input:
s is a string and n is an integer

C++

while(cin>>s>>n)

{

...

}

c

while(scanf("%s%d",s,&n)==2) //to see if the scanf read in as many items as you want

/*while(scanf(%s%d",s,&n)!=EOF) //this also work */

{

...

}

Source

 
二. 题意
  • 给出字符串表示的浮点数 和 n次方数
  • 输出其n次方运算后的值
三. 分析
  • 算法核心:

    • 大数乘法:利用程序模拟算数运算过程,算出乘积
  • 实现细节:
    • 将输入数字从低位到高位反转存储,计算时方便进位
    • 模拟计算时,去除小数点,统一按照大整数相乘
    • 输出时逆序输出,同时计算小数点位置,相应位输出小数点
 
三. 题解
 #include <stdio.h>
#include <memory.h> #define MAXN 100
int a[MAXN], b[MAXN], len_a, len_b; /* 模拟算数运算过程,算出乘积 */
void multiply(int *a, int *b)
{
int i, j, len, c[MAXN]; memset(c, , sizeof(c)); for (i = ; a[i] != -; i++)
for (j = ; b[j] != -; j++)
c[i + j] += a[i] * b[j]; len = i + j - ; for (i = ; i < len; i++)
if (c[i] >= ) { c[i + ] += c[i] / ; c[i] = c[i] % ;} if (c[len] != ) len_b = len + ;
else len_b = len; for (i = ; i < len_b; i++) b[i] = c[i];
} void main()
{
char str[MAXN];
int i, j, exp;
int st, pt, ed; freopen( "input.txt", "r" , stdin); while (scanf("%s %d", str, &exp) != EOF) {
memset(a, -, sizeof(a));
memset(b, -, sizeof(b));
len_a = ;
st = pt = ed = -;
   
   /*
    1.st为输入数字的启始位置
    2.pt为输入数字小数点的位置
    3.ed为输入数字的结束位置
    4.此三个中间变量的作用:
      4.1 去掉开头和结尾的 0
      4.2 对于小数点的特殊处理
      4.3 用于计算出乘积后小数点的正确位置
*/
for (i = ; str[i] != '\0'; i++) {
len_a++; if (str[i] != '' && str[i] != '.' && st == -) st = i;
if (str[i] != '' && str[i] != '.' || (str[i] != '.' && pt == -)) ed = i;
if (str[i] == '.') pt = i;
} for (i = ed, j = ; i >= st; i--) {
if (str[i] == '.') continue; b[j] = a[j] = str[i] - '';
j++;
} len_b = len_a = j;
for(i = ; i < exp; i++) multiply(a, b); if (pt < st) {
printf(".");
for (i = ; i < (ed - pt) * exp - len_b; i++) printf("");
} for (i = len_b - ; i >= ; i--) {
if (pt > st && pt < ed && i == (ed - pt) * exp - ) printf(".");
printf("%d", b[i]);
} printf("\n");
}
}

[POJ] #1001# Exponentiation : 大数乘法的更多相关文章

  1. POJ 1001 Exponentiation(大数运算)

    POJ 1001 Exponentiation 时限:500 ms   内存限制:10000 K 提交材料共计: 179923   接受: 43369 描述:求得数R( 0.0 < R < ...

  2. [POJ 1001] Exponentiation C++解题报告 JAVA解题报告

        Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 126980   Accepted: 30 ...

  3. POJ 1001 Exponentiation 无限大数的指数乘法 题解

    POJ做的非常好,本题就是要求一个无限位大的指数乘法结果. 要求基础:无限大数位相乘 额外要求:处理特殊情况的能力 -- 关键是考这个能力了. 所以本题的用例特别重要,再聪明的人也会疏忽某些用例的. ...

  4. POJ 1001 Exponentiation

    题意:求c的n次幂……要求保留所有小数…… 解法:一开始只知道有BigInteger……java大数+模拟.第一次写java大数……各种报错各种exception……ORZ 没有前导0和小数后面的补位 ...

  5. poj 1001 Exponentiation 第一题 高精度 乘方 难度:1(非java)

    Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 138526   Accepted: 33859 ...

  6. POJ 1001 Exponentiation(JAVA,BigDecimal->String)

    题目 计算实数a的n次方,具体输出格式看案例 import java.util.*; import java.math.*; public class Main { public static voi ...

  7. POJ 1001 Exponentiation 模拟小数幂

    模拟小数幂 小数点位 pos 非零末位 e 长度 len 只有三种情况 pos > len pos < e e < pos < len #include <iostrea ...

  8. Project Euler 16 Power digit sum( 大数乘法 )

    题意: 215 = 32768,而32768的各位数字之和是 3 + 2 + 7 + 6 + 8 = 26. 21000的各位数字之和是多少? 思路:大数乘法,计算 210 × 100 可加速计算,每 ...

  9. 51nod 1027大数乘法

    题目链接:51nod 1027大数乘法 直接模板了. #include<cstdio> #include<cstring> using namespace std; ; ; ; ...

随机推荐

  1. 89. Gray Code

    题目: The gray code is a binary numeral system where two successive values differ in only one bit. Giv ...

  2. xargs的- n1参数

    起因在对一堆*.tar.gz文件解压缩时,发现tar xvfz *.tar.gz不管用,一查,原来是tar xvfz *.tar.gz会被shell给拆成tar xvfz a.tar.gz b.tar ...

  3. 基于条件随机场(CRF)的命名实体识别

    很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法C ...

  4. centos防火墙设置

    1.查看 service iptables status 2.开关 service iptables start/stop 3.开机启动 chkconfig iptables on/off 4.编辑端 ...

  5. 类Item_equal

    class Item_equal: public Item_bool_func { List<Item_field> fields; /* list of equal field item ...

  6. bzoj1312

    忘写题解了,经典的最大密度子图 可以类似分数规划的做,二分密度,然后转化为最大权闭合子图做,判断是否大于0 注意方案的输出 const eps=1e-6; lim=1e-12; inf=; type ...

  7. uva10820Send a Table

    筛法. 首先使cnt[i]=sqr(n/i),这样cnt[i]就表示gcd(x,y)大于等于i的数对的个数,然后倒序枚举减去gcd大于i的个数就可以得到ans[i].最终得到ans[1]. 这个算法单 ...

  8. socket编程---一个简单例子

    服务器端代码(单线程): import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamRe ...

  9. UVA 1395 Slim Span (最小生成树,MST,kruscal)

    题意:给一个图,找一棵生成树,其满足:最大权-最小权=最小.简单图,不一定连通,权值可能全相同. 思路:点数量不大.根据kruscal每次挑选的是最小权值的边,那么苗条度一定也是最小.但是生成树有多棵 ...

  10. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...