P38、面试题3:二维数组中的查找
| 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。 |
首先选取数组中右上角的数字。如果该数字等于要查找的数字,查找过程结束;如果该数字大于要查找的数字,剔除这个数字所在的列;如果该数字小于要查找的数字,剔除这个数字所在的行。也就是说,如果要查找的数字不在数组的右上角,则每一次都在数组的查找范围中剔除一行或者一列,这样每一步都可以缩小查找的范围,直到找到要查找的数字,或者查找范围为空。
代码实现:
package com.yyq; /**
* Created by Administrator on 2015/9/4.
*/
public class FindInPartiallySortedMatrix {
public static boolean findInMatrix(int matrix[][],int rows,int colums,int number) {
boolean found = false;
if (matrix != null && rows > 0 && colums > 0) {
int row = 0;
int colum = colums - 1;
while (row < rows && colum >= 0) {
if (matrix[row][colum] == number) {
found = true;
break;
} else if (number < matrix[row][colum]) {
colum--;
} else {
row++;
}
}
}
return found;
}
public static void Test(String testName, int matrix[][], int rows, int columns, int number){
if(testName != null){
System.out.println(testName+"=========================");
}
boolean result = findInMatrix(matrix, rows, columns, number);
System.out.println("result = "+result);
} // 要查找的数在数组中
public void Test1(){
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test1:要查找的数在数组中", matrix, 4, 4, 7);
} // 要查找的数不在数组中
public void Test2()
{
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test2:要查找的数不在数组中", matrix, 4, 4, 5);
} // 要查找的数是数组中最小的数字
void Test3()
{
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test3:要查找的数是数组中最小的数字", matrix, 4, 4, 1);
} // 要查找的数是数组中最大的数字
void Test4()
{
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test4:要查找的数是数组中最大的数字", matrix, 4, 4, 15);
} // 要查找的数比数组中最小的数字还小
void Test5()
{
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test5: 要查找的数比数组中最小的数字还小",matrix, 4, 4, 0);
} // 要查找的数比数组中最大的数字还大
void Test6()
{
int matrix[][] = {{1, 2, 8, 9}, {2, 4, 9, 12}, {4, 7, 10, 13}, {6, 8, 11, 15}};
Test("Test6:要查找的数比数组中最大的数字还大", matrix, 4, 4, 16);
} //传入只有一个数字的数组
void Test7()
{
int matrix[][] = {{1}};
Test("Test7:传入只有一个数字的数组", matrix, 1, 1, 1);
}
// 鲁棒性测试,输入空指针
void Test8()
{
Test("Test8:鲁棒性测试,输入空指针", null, 0, 0, 16);
} public static void main(String[] args){
FindInPartiallySortedMatrix test = new FindInPartiallySortedMatrix();
test.Test1();
test.Test2();
test.Test3();
test.Test4();
test.Test5();
test.Test6();
test.Test7();
test.Test8();
}
}
输出结果:
|
P38、面试题3:二维数组中的查找的更多相关文章
- 【剑指offer】面试题 4. 二维数组中的查找
面试题 4. 二维数组中的查找 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序. 请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该 ...
- 剑指Offer:面试题3——二维数组中的查找(java实现)
问题描述:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路:取数组中的元素与 ...
- 剑指offer-面试题3.二维数组中的查找
题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增 的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断该数组中是否有该整数. 算法流程如下: 比如一个 ...
- 【剑指Offer学习】【面试题:二维数组中的查找】PHP实现
最近一直看剑指Offer.里面很多算法题.于是就想着用PHP来显示一下. 题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序. 请完成一个函数,输入这样的 ...
- 剑指offer面试题4: 二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 剑指offer编程题Java实现——面试题3二维数组中的查找
题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 下面是我实现的代码 ...
- 前端常见算法面试题之 - 二维数组中的查找[JavaScript解法]
--------------------- 作者:吴潇雄 来源:CSDN 原文:https://blog.csdn.net/weixin_43439741/article/details/835118 ...
- 剑指offer面试题3二维数组中的查找
题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 需要与面试官确认的是,这 ...
- 【剑指Offer】面试题04. 二维数组中的查找
题目 在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 示例: 现 ...
- 《剑指offer》面试题04. 二维数组中的查找
问题描述 在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 示例: ...
随机推荐
- windbg远程调试
1, A,调试机. B,被调试机. 2, 在B机上安装windbg,公共符号文件,程序的PDB都要复制过来. 公共符号文件位置设置在于A机相同的位置. windbg–server tcp:port=5 ...
- lex&yacc
LEX: yytext 数组包含匹配模式的文本; 使词法分析程序工作的两条规则是:1. lex 模式只匹配输入字符或字符串一次.2. lex 执行当前输入的最长可能匹配的动作. 由 lex 产生的词法 ...
- 带搜索的下拉框Chosen
一:参考 https://harvesthq.github.io/chosen/ Chosen是一个jQuery插件 二:引入js文件 <link href="plug-in/chos ...
- 将XML文件保存到DataGridView中
#region get护理单记录信息XML //将XML文件保存到DataTable private DataTable FromXML2DataTable(string XMLStr,string ...
- Android 核心组件 Activity 之上
核心组件的特征 1. 必须继承自特定的类(Activity 或者 Activity的子类) 2. 必须注册: 通常是AndroidManifest.xml的 <application> 中 ...
- Sublime Text 前端插件推荐
html/CSS快速编辑 --- Emment HTML CSS JS 美化插件 --- HTML/CSS/JS Prettyfy MarkDown 预览 --- MarkDown Preview J ...
- 使用Java反射(Reflect)、自定义注解(Customer Annotation)生成简单SQL语句
这次给大家介绍一下在Java开发过程中 使用自定义注解开发:主要知识点: 1.反射 主要用于提取注解信息 2.自定义异常 主要是为了 ...
- python装饰器总结
一.装饰器是什么 python的装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.简单的说装饰器就是一个用来返回函数的函数 ...
- 用minicom 产看 usb的串口
1 用命令 sudo apt-get install minicom 安装 2 用 minicom -s 进行配置 往下选择 Seral port setup: 然后输入 A :选择自己的 ...
- Git之不明觉厉11-利其器source tree
前面10篇文章都在用命令行,虽然装逼不错,但是我想说一句,平时我也是用source tree比较多点,命令行一般都是在source tree的图形按钮找不到在哪里,就直接用命令行.对于初次用git的同 ...