[SDOI2017]遗忘的集合
综合了很多套路的题
一看就是完全背包
生成函数!
转化为连乘积形式
Pi....=F
求Ln!
降次才可以解方程
发现方程是:
f[i]=∑t|i : bool(t)*t/i
f[i]*i=∑t|i : bool(t)*t
f=g*1(*是狄利克雷卷积)
所以,g=f*1
构造得到的解是唯一的,所以其实解是唯一的。
O(nlogn)
(多项式全家桶多项式全家桶)
int main(){
int n;rd(n);rd(mod);
Poly f;
f.resize(n+);
f[]=;
for(reg i=;i<=n;++i) rd(f[i]);
f=Ln(f);
for(reg i=;i<n+;++i) f[i]=mul(f[i],i);
sieve(n);
for(reg i=;i<=n;++i){
for(reg j=i;j<=n;j+=i){
g[j]=ad(g[j],mul(f[i],miu[j/i]));
}
}
int ans=;
for(reg i=;i<=n;++i){
if(g[i]) ++ans;
}
printf("%d\n",ans);
for(reg i=;i<=n;++i){
if(g[i]) printf("%d ",i);
}
return ;
}
[SDOI2017]遗忘的集合的更多相关文章
- [LOJ2271] [SDOI2017] 遗忘的集合
题目链接 LOJ:https://loj.ac/problem/2271 洛谷:https://www.luogu.org/problemnew/show/P3784 BZOJ太伤身体死活卡不过还是算 ...
- 洛谷P3784 [SDOI2017]遗忘的集合(生成函数)
题面 传送门 题解 生成函数这厮到底还有什么是办不到的-- 首先对于一个数\(i\),如果存在的话可以取无限多次,那么它的生成函数为\[\sum_{j=0}^{\infty}x^{ij}={1\ove ...
- [题解] LuoguP3784 [SDOI2017]遗忘的集合
要mtt的题都是...... 多补了几项就被卡了一整页......果然还是太菜了...... 不说了......来看100分的做法吧...... 如果做过付公主的背包,前面几步应该不难想,所以我们再来 ...
- [BZOJ4913][SDOI2017]遗忘的集合
题解: 首先先弄出$f(x)$的生成函数$$f(x)=\prod_{i=1}^{n} {{(\frac{1}{1-x^i})}}^{a[i]}$$因为$f(x)$已知,我们考虑利用这个式子取推出$a[ ...
- P3784 [SDOI2017]遗忘的集合
非常神仙的一道题! 题意:给出某n个数字跑完全背包m容量的dp数组,求满足要求的字典序最小的n个元素,不知道n是多少. 首先考虑付公主的背包这个题. 对dp数组求一个ln,设它为F. 已知 e^(G1 ...
- 洛谷 3784(bzoj 4913) [SDOI2017]遗忘的集合——多项式求ln+MTT
题目:https://www.luogu.org/problemnew/show/P3784 https://www.lydsy.com/JudgeOnline/problem.php?id=4913 ...
- SDOI2017遗忘的集合
题面链接 咕咕咕 题外话 为了这道题我敲了\(MTT\).多项式求逆.多项式\(ln\)等模板,搞了将近一天. sol 最近懒得写题解啊,随便搞搞吧. 看到这个就是生成函数套上去. \[F(x)=\p ...
- BZOJ 4913 [Sdoi2017] 遗忘的集合
骂了隔壁的 BZOJ垃圾评测机 我他妈卡了两页的常数了 我们机房的电脑跑的都比BZOJ快
- 【SDOI2017】遗忘的集合
题目描述 好神仙啊,我还真的以为这是个构造题,结果是有唯一解的. 设答案为多项式\(a,a_i\in\{0,1\}\). 则: \[ f(x)=\Pi (\frac{1}{1-x^i})^{a_i} ...
随机推荐
- 大数据---Ranger-1
背景:从软通出来,告别华为外包,离开H区,进入了一家搞大数据的创业公司,感觉周围都好陌生,记录下自己大数据的career! 2019-03-4新的征程-入职第一天: 一.办理入职手续 公司人比较少,没 ...
- Struts2中五个重要的常量
一.五个常量的位置:位于xwork核心包下的Action字节码文件里 二.五个常量的介绍: a: SUCCESS public static final String SUCCESS = " ...
- Flask实战第6天:视图函数Response返回值
视图函数的返回值会被自动转换为一个响应对象,Flask的转换逻辑如下: 如果返回的是一个合法的响应对象,则直接返回 可以使用make_response函数来创建Response对象,这个方法可以设置额 ...
- CSRF & CORS
下面转的两篇文章分别说明了以下两个概念和一些解决方法: 1. CSRF - Cross-Site Request Forgery - 跨站请求伪造 2. CORS - Cross Origin Res ...
- weblogic patch log显示
如何在WebLogic 12.1.3 版本的 server log 中显示 opatch 的补丁信息? 打补丁 patch 23558563 之后. 需要在 JAVA_OPTIONS 中添加如下参数 ...
- Testlink1.9.17使用方法(第二章 登录&汉化设置)
第二章 登录&汉化设置 QQ交流群:585499566 1,使用超级账户admin/admin登录. 2,登录后,会提示创建一个新的项目,先不要创建,先进入用户管理,设置成中文显示,也就是汉化 ...
- GlusterFS群集存储项目
最小化安装的centos7.5 内存大于1GB 关闭selinux,防火墙端口放行(port:24007,111)(测试建议关闭firewalld) 一.环境部署 所有软件包离线安装,原因是yum安装 ...
- Structs2 中拦截器获取请求参数
前言 环境:window 10,JDK 1.7,Tomcat 7 测试代码 package com.szxy.interceptor; import java.util.Map; import jav ...
- git之命令git checkout
git checkout 最常用的就是切换分支,最近又发现一种新的用法: 有时候,在看代码的时候,不小心改动了部分代码,但跟项目没啥关系,这个时候,想不去提交这些代码,怎么处理呢? 使用git che ...
- wireshark抓包,安装及简单使用
跟着实验室师兄尝试做流量分析,趁着离期末考试还有几天,尽快把环境搭好. 采集:自动化测试monkeyrunner,ok 抓包 charles/Wireshark,ok 限制其他应用运行App Moun ...