HDU4899 Hero meet devil DP套DP
陈老师的题QwQ
原题链接
题目大意
有两个字符串\(S\)和\(T\)(都只能由'A','C','G','T'这四个字符组成),\(S\)已知\(T\)未知,还知道\(S\)的长度为\(m\)。求满足\(Len(LCS(S,T))=L,1\leqslant L\leqslant |T|\)的\(S\)的个数
先想想若\(S\)已知怎么做。一个简单的\(DP\)就能解决,设\(dp[i][j]\)表示\(S\)到\(i\)位置,\(T\)到\(j\)位置时\(LCS\)的长度:
1.若\(S[i]==T[j]\),则\(dp[i][j]=max(dp[i-1][j-1]+1,max(dp[i-1][j],dp[i][j-1]))\)
2.否则\(dp[i][j]=max(dp[i-1][j],dp[i][j-1])\)
然后考虑倒过来怎么做,看一下数据范围,可能状压?设\(f[i][state]\)表示\(T\)填到第\(i\)位,\(dp[?][i]\)在\(Len(S)+1\)进制下的表示时的方案数,再令\(g[state][c]\)表示状态是\(state\)时再加一个字符\(c\)后的\(state\)是多少。\(g\)数组可以预处理一下,然后\(f\)就好转移了:
\(f[i][g[state][c]]=f[i][g[state][c]]+f[i-1][state]\)
这样的话空间显然会炸,一个显然的性质,\(dp[i][j]\)只有可能是\(dp[i-1][j]\)或\(dp[i-1][j]+1\),我们把差分数组在二进制下压一下就行了
预处理时间复杂度\(O(4*n*2^{Len(S)})\),转移的时间复杂度为\(O(4*m*2^{Len(S)})\),空间复杂度\(\theta (m*2^{Len(S)}+4*2^{Len(S)})\)
代码(预处理参考了自为风月马前卒大佬的博客):
#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
int kase;
string S;
char ch[4] = {'A', 'C', 'G', 'T'};
int n, m, tmp[2][20], lim, f[1001][32800], g[32800][4], ans[20];
int lowbit(int x) {
return x&-x;
}
int popcount(int x) {
int cnt = 0;
while(x) cnt++, x -= lowbit(x);
return cnt;
}
int calc(int state, char c) {
for(int i = 1; i <= n; ++i) tmp[0][i] = tmp[0][i-1]+((state>>i-1)&1);
int ret = 0;
for(int i = 1; i <= n; ++i)
{
int t = 0;
if(c == S[i-1]) t = tmp[0][i-1]+1;
t = max(t, max(tmp[1][i-1], tmp[0][i]));
tmp[1][i] = t;
}
for(int i = 1; i <= n; ++i) ret += (1<<i-1)*(tmp[1][i]-tmp[1][i-1]);
return ret;
}
int main() {
cin >> kase;
for(int i = 1; i <= kase; ++i) {
cin >> S >> m;
n = S.length();
lim = (1<<n)-1;
memset(f, 0, sizeof f), memset(ans, 0, sizeof ans);
f[0][0] = 1;
for(int i = 0; i <= lim; ++i)
for(int j = 0; j < 4; ++j) g[i][j] = calc(i, ch[j]);
for(int i = 1; i <= m; ++i)
for(int j = 0; j <= lim; ++j)
for(int k = 0; k < 4; ++k)
f[i][g[j][k]] = (f[i][g[j][k]]+f[i-1][j])%MOD;
for(int i = 0; i <= lim; ++i) ans[popcount(i)] = (ans[popcount(i)]+f[m][i])%MOD;
for(int i = 0; i <= n; ++i) cout << ans[i] << endl;
}
return 0;
}
HDU4899 Hero meet devil DP套DP的更多相关文章
- hdu4899 Hero meet devil
题目链接 题意 给出一个长度字符串\(T\),其中只包含四种字符\((A,C,G,T)\),需要找一个字符串\(S\),使得\(S\)的长度为\(m\),问\(S\)和\(T\)的\(lcs\)为\( ...
- HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...
- BZOJ 3864 Hero meet devil (状压DP)
最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- BZOJ 3864 Hero meet devil 超详细超好懂题解
题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...
- luogu 4158 粉刷匠 dp套dp
dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...
随机推荐
- java集合(1)
java集合类存放于java.util包里,只能存放对象,存放的是对象的引用,可以是不同类型,不限数量的数据类型. 顶层接口:Iterator(迭代器),Map Iterator:核心方法hasNex ...
- Django 提交 form 表单
创建 Django 的过程可以参考上一篇文章 https://www.cnblogs.com/klvchen/p/10601536.html 在 templates 文件夹下创建一个 index.ht ...
- SAP 没有激活HUM功能照常可以使用Handling Unit
SAP 没有激活HUM功能照常可以使用Handling Unit 笔者所在的项目上的公司间STO的流程里,发货公司在做PGI之后系统自动触发收货公司的inbound delivery单据,发货公司发出 ...
- springboot模块
1.web <dependency> <groupId>org.springframework.boot</groupId> <artifactId>s ...
- thinkphp5.1验证器场景验证中传参的方法。
一个场景:用户保存自己的昵称,如果已经有其他用户用了这个昵称则不允许保存,但是要排除当前用户自己,因为如果用户未作修改,新昵称和老昵称一样,是可以保存的. 因为昵称定义了唯一规则: 'name' =& ...
- SQL Server中将多行数据拼接为一行数据(一个字符串)
表A中id与表B中aid为一对多的关系 例如: 表A: id name a1 tom a2 lily a3 lucy 表B: id aid value b1 a1 B1 b2 a1 B2 b3 a2 ...
- eclipse 开发web 项目,使用gradle 需要安装的插件
1.Buildship Gradle 扩展 eclipse IDE 以支持使用 Gradle 构建软件.此解决方案由 Eclipse 基金会提供 2.EGradle Editor (主要用来编写gra ...
- SpringBoot Mybatis 使用LocalDateTime
mybatis-spring-boot-starter 2.0.1 会报错,不知道如何解决(建议先不用) mybatis-spring-boot-starter 2.0.1 - 1.3.2 版本不会报 ...
- JavaScript中编码函数escape,encodeURI,encodeURIComponent
第一:escape():对字符串进行编码,escape()不编码的字符:@*/+ 第二:encodeURI() 函数可把字符串作为 URI 进行编码.不会进行转义的:;/?:@&=+$,# 第 ...
- SQL练习题题目
基本语法************************************************************************************************ ...