陈老师的题QwQ

原题链接

题目大意

有两个字符串\(S\)和\(T\)(都只能由'A','C','G','T'这四个字符组成),\(S\)已知\(T\)未知,还知道\(S\)的长度为\(m\)。求满足\(Len(LCS(S,T))=L,1\leqslant L\leqslant |T|\)的\(S\)的个数

先想想若\(S\)已知怎么做。一个简单的\(DP\)就能解决,设\(dp[i][j]\)表示\(S\)到\(i\)位置,\(T\)到\(j\)位置时\(LCS\)的长度:

1.若\(S[i]==T[j]\),则\(dp[i][j]=max(dp[i-1][j-1]+1,max(dp[i-1][j],dp[i][j-1]))\)

2.否则\(dp[i][j]=max(dp[i-1][j],dp[i][j-1])\)

然后考虑倒过来怎么做,看一下数据范围,可能状压?设\(f[i][state]\)表示\(T\)填到第\(i\)位,\(dp[?][i]\)在\(Len(S)+1\)进制下的表示时的方案数,再令\(g[state][c]\)表示状态是\(state\)时再加一个字符\(c\)后的\(state\)是多少。\(g\)数组可以预处理一下,然后\(f\)就好转移了:

\(f[i][g[state][c]]=f[i][g[state][c]]+f[i-1][state]\)

这样的话空间显然会炸,一个显然的性质,\(dp[i][j]\)只有可能是\(dp[i-1][j]\)或\(dp[i-1][j]+1\),我们把差分数组在二进制下压一下就行了

预处理时间复杂度\(O(4*n*2^{Len(S)})\),转移的时间复杂度为\(O(4*m*2^{Len(S)})\),空间复杂度\(\theta (m*2^{Len(S)}+4*2^{Len(S)})\)

代码(预处理参考了自为风月马前卒大佬的博客):

#include <bits/stdc++.h>

#define MOD 1000000007

using namespace std;

int kase;
string S;
char ch[4] = {'A', 'C', 'G', 'T'};
int n, m, tmp[2][20], lim, f[1001][32800], g[32800][4], ans[20]; int lowbit(int x) {
return x&-x;
} int popcount(int x) {
int cnt = 0;
while(x) cnt++, x -= lowbit(x);
return cnt;
} int calc(int state, char c) {
for(int i = 1; i <= n; ++i) tmp[0][i] = tmp[0][i-1]+((state>>i-1)&1);
int ret = 0;
for(int i = 1; i <= n; ++i)
{
int t = 0;
if(c == S[i-1]) t = tmp[0][i-1]+1;
t = max(t, max(tmp[1][i-1], tmp[0][i]));
tmp[1][i] = t;
}
for(int i = 1; i <= n; ++i) ret += (1<<i-1)*(tmp[1][i]-tmp[1][i-1]);
return ret;
} int main() {
cin >> kase;
for(int i = 1; i <= kase; ++i) {
cin >> S >> m;
n = S.length();
lim = (1<<n)-1;
memset(f, 0, sizeof f), memset(ans, 0, sizeof ans);
f[0][0] = 1;
for(int i = 0; i <= lim; ++i)
for(int j = 0; j < 4; ++j) g[i][j] = calc(i, ch[j]);
for(int i = 1; i <= m; ++i)
for(int j = 0; j <= lim; ++j)
for(int k = 0; k < 4; ++k)
f[i][g[j][k]] = (f[i][g[j][k]]+f[i-1][j])%MOD;
for(int i = 0; i <= lim; ++i) ans[popcount(i)] = (ans[popcount(i)]+f[m][i])%MOD;
for(int i = 0; i <= n; ++i) cout << ans[i] << endl;
}
return 0;
}

HDU4899 Hero meet devil DP套DP的更多相关文章

  1. hdu4899 Hero meet devil

    题目链接 题意 给出一个长度字符串\(T\),其中只包含四种字符\((A,C,G,T)\),需要找一个字符串\(S\),使得\(S\)的长度为\(m\),问\(S\)和\(T\)的\(lcs\)为\( ...

  2. HDU 4899 Hero meet devil (状压DP, DP预处理)

    题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...

  3. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

  4. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  5. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  6. DP套DP

    DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...

  7. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  8. BZOJ 3864 Hero meet devil 超详细超好懂题解

    题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...

  9. luogu 4158 粉刷匠 dp套dp

    dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...

随机推荐

  1. 零基础学Python--------第11章 使用Python操作数据库

    第11章 使用Python操作数据库 11.1 数据库编程接口 在项目开发中,数据库应用必不可少.虽然数据库的种类有很多,如SQLite.MySQL.Oracle等,但是它们的功能基本都是一样的,为了 ...

  2. Ext.isNumber与Ext.isNumeric

    Ext.isNumber: Ext.isNumber(1) true Ext.isNumber(new Number(1)) false Ext.isNumber("1") fal ...

  3. vue build错误异常的解决方法

    在生成vue项目的时候,出现如下错误 ERROR in static/js/index.d66d806fcdd72b36147b.js from UglifyJs Unexpected token: ...

  4. 这20个常规Python语法你都搞明白了吗?

    Python简单易学,但又博大精深.许多人号称精通Python,却不会写Pythonic的代码,对很多常用包的使用也并不熟悉.学海无涯,我们先来了解一些Python中最基本的内容. Python的特点 ...

  5. 位运算 leecode.389. 找不同

    //给定两个字符串 s 和 t,它们只包含小写字母. //字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母. //请找出在 t 中被添加的字母 char findTheDifferenc ...

  6. C# Base64方式的编码与解码

    编码与解码方法: ///编码 public static string EncodeBase64(string code_type, string code) { string encode = &q ...

  7. easyui实现分页

    主要参考官方的文档,欢迎评论 1.集成easyui,下面是我的引入方式,我引入到了head.html 每次只要引入该页面就可以了. <!-- easyui样式支持 --><link ...

  8. JS倒计时两种种实现方式

    最近做浏览器界面倒计时,用js就实现,两种方式: 一:设置时长,进行倒计时.比如考试时间等等 代码如下: <html> <head> <meta charset=&quo ...

  9. Windows Server 2008 R2 Enterprise x64 部署 nginx、tomcat、mysql

    部署nginx nginx主要做反向代理用,可以单独部署到其它机器上,这里nginx和tomcat部署在同一台机器上. 下载nginx-1.14.1.zip,并解压到目标目录,打开cmd进入到解压后的 ...

  10. docker 发布方式尝试

    docker 发布方式尝试 目前有个小项目, 尝试用docker的方式来发布, 项目只有一个节点, 使用 kubenate 有点小题大做, 所以采用docker-compose来发布. 发布过程 GI ...