1.基于知识的表征

如WordNet(图1-1),包含同义词集(synonym sets)和上位词(hypernyms,is a关系)。



存在的问题:

  • 作为资源来说是好的,但是它失去了词间的细微差别,比如说"good"和"full"同义是需要在一定的上下文中才能成立的;
  • 易错过词的新义,基本不可能时时保持up-to-date;
  • 是人为分的,所以是主观的结果;
  • 需要花费很多的人力去创建和调整;
  • 很难计算出准确的词间相似度。

2.基于数据库的表征

2.1 词本身

2.1.1 词集模型(SoW,Set of Words)

0-1表征,参见图2.1.1-1,向量维度为数据库中总词汇数,每个词向量在其对应词处取值为1,其余处为0。



存在的问题:

因为不同词间相互正交,所以很难计算词间相似度。

2.1.2 词袋模型(BoW,Bag of Words)

除了考虑词是否出现外,词袋模型还考虑其出现次数,即每个词向量在其对应词处取值为该词在文本中出现次数,其余处为0。

但是,用词频来衡量该词的重要性是存在问题的,比如"the",其词频很高,但其实没有那么重要,所以可以使用TF-IDF特征来统计修正词频。

修正后的向量依旧存在数据稀疏的问题,大部分值为0,常使用Hash Trick进行降维。

TF-IDF

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。

字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TF(term frequency):词在当前文本中的词频;

IDF(inverse document frequency):包含该词的文本在语料库中出现频率的倒数的对数。

\(IDF(x)=log{N \over N(x)}\),其中,N是语料库中文本的总数,N(x)是语料库中包含词x的文本的总数。

常见的IDF平滑公式之一:\(IDF(x)=log{N+1 \over N(x)+1}+1\)。

最终,词x的TF-IDF值:\(TF\)-\(IDF(x)=TF(x)*IDF(x)\)。

Hash Trick

哈希函数h将第i个特征哈希到位置j,即h(i)=j,则第i个原始特征的词频数值c(i)将会累积到哈希后的第j个特征的词频数值c'(j)上,即:\(c'(j)=\sum_{i\in J;h(i)=j}c(i)\),其中J是原始特征的维度。

但这样做存在一个问题,有可能两个原始特征哈希后位置相同,导致词频累加后特征值突然变大。

为了解决这个问题,出现了hash trick的变种signed hash trick,多了一个哈希函数\({\xi}:N{\rightarrow}{\pm}1\),此时,我们有\(c'(j)=\sum_{i\in J;h(i)=j}{\xi}(i)c(i)\)。

这样做的好处是,哈希后的特征值仍然是一个无偏的估计,不会导致某些哈希位置的值过大。从实际应用中来说,由于文本特征的高稀疏性,这么做是可行的。

注意hash trick降维后的特征已经不知道其代表的特征和意义,所以其解释性不强。

2.2 结合上下文

基本思想:近义词之间常有相似的上下文邻居。

2.2.1 共现矩阵

  • 基于整个文档:常给出文档的主题信息;
  • 基于上下文窗口:常捕获语法、语义信息。

图2.2.1-1为基于窗口大小为1、不区分左右形成的高维稀疏词向量。



存在的问题:

  • 共现矩阵的大小随着词汇量的增多而变大;
  • 维度高;
  • 数据稀疏带来的鲁棒性差。

2.2.2 低维稠密词向量

降维

通过对共现矩阵进行SVD,如图2.2.2-1所示。



选择U的前k列得到k维词向量。

优势:

  • 有效地利用了统计信息。

存在的问题:

  • 难以加入新词,每次来个新词,都得更新共现矩阵,然后重新SVD;
  • 由于大多数词不共现,导致矩阵十分稀疏;
  • 矩阵维度通常很高(\(\approx 10^6*10^6\));
  • 计算代价高,对于\(n*m\)的矩阵为\(O(nm^2)\);
  • 需要对共现矩阵进行处理来面对词频上的极端不平衡现象。

常用的解决办法:

  • 忽视"the"、"he"、"has"等功能词或者限制其次数不超过某个值(常100);
  • 基于文档中词间距离对共现矩阵中的count进行加权处理,常窗口中离中心词越近的词分配给其的权重越大;
  • 使用Pearson相关系数(\(C(X,Y)=\frac{cov(X,Y)}{\sigma(X)*\sigma(Y)}\))来代替原本的count,负数置0。

直接学

基于迭代:相较于基于SVD的方法直接捕获所有共现值的做法,基于迭代的方法一次只捕获一个窗口内的词间共现值。

  • word2vec
  • GloVe

词向量:part 1 WordNet、SoW、BoW、TF-IDF、Hash Trick、共现矩阵、SVD的更多相关文章

  1. 词表征 1:WordNet、0-1表征、共现矩阵、SVD

    原文地址:https://www.jianshu.com/p/c1e4f42b78d7 一.基于知识的表征 参见图1.1,WordNet中包含同义词集(synonym sets)和上位词(hypern ...

  2. Deep Learning In NLP 神经网络与词向量

    0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representati ...

  3. NLP学习(1)---Glove模型---词向量模型

    一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是 ...

  4. 词向量之Word2vector原理浅析

    原文地址:https://www.jianshu.com/p/b2da4d94a122 一.概述 本文主要是从deep learning for nlp课程的讲义中学习.总结google word2v ...

  5. 词向量(one-hot/SVD/NNLM/Word2Vec/GloVe)

    目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基 ...

  6. NLP之词向量

    1.对词用独热编码进行表示的缺点 向量的维度会随着句子中词的类型的增大而增大,最后可能会造成维度灾难2.任意两个词之间都是孤立的,仅仅将词符号化,不包含任何语义信息,根本无法表示出在语义层面上词与词之 ...

  7. NLP获取词向量的方法(Glove、n-gram、word2vec、fastText、ELMo 对比分析)

    自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方 ...

  8. NLP教程(2) | GloVe及词向量的训练与评估

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  9. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

随机推荐

  1. java基础(5)----面向对象

    编程思想: 简单的说一下,我们学习编程,最重要的就是要有编程思想,而编程思想无非就是面向过程和面向对象,以下谈谈我对编程思想的理解. 面向过程: 从过程入手,第一步,第二步--.借助过程与过程的配合, ...

  2. Hibernate学习笔记三 多表

    一对多|多对一 表中的表达 实体中的表达 实体代码: package com.yyb.domain; import java.util.HashSet; import java.util.Set; p ...

  3. hibernate框架学习笔记10:HQL查询详解

    HQL语句中不可以出现与表有关的内容,而是对象的属性 实体类(注意配置文件): package domain; import java.util.HashSet; import java.util.S ...

  4. alpha-咸鱼冲刺day2

    一,合照 emmmmm.自然是没有的. 二,项目燃尽图 三,项目进展 今天并没有什么进展,弄了好久好像也只研究出怎么把JS的功能块插入进去.html的信息提交这些还不知道要怎么弄. 四,问题困难 日常 ...

  5. B-end

    Beta冲刺成员名单和工作量比例 姓名 学号 负责内容 工作量比例 张梨贤 170327109 负责企业人员的委托/收回授权.第三方机构的委托授权管理.分级统计展示.分级列表展示 26% 黄腾飞 17 ...

  6. 一个毕生难忘的BUG

    记得以前接手过一个Java项目,服务器程序,直接让Jar在linux上跑的那种, 这个项目由两个web服务组成,也就是两条Java进程,主进程 xxx.jar,辅助进程 xxx_helper.jar. ...

  7. eclipse maven项目目录

    今天遇见一个错误,关于eclipse项目的路径问题,web-inf的路径,上图和下图出现了两种web-INF,src的web-INFf和webContent的web-INF,src里面的文件需要编译以 ...

  8. 70后.net老猿,尚能饭否?

    程序猿的大限 距离上一次主动找工作,快到5年了,到现在的东家,是差不多3年前猎头挖过来的,而当时东家刚刚被欧洲一家有百年历史的跨国企业集团收购,所以我也就有幸成了一名“外企员工”,但是集团保留原东家人 ...

  9. Ubuntu16.04 + Zabbix 3.4.7 邮件报警设置

    部署了Zabbix,需要配置邮件报警,在网上找了一些教程,大多是是用的CentOS + Zabbix 2.x版本的,而且还要写脚本,感觉太麻烦了,所以自己结合其他文章摸索了一套配置方法. 先说一下环境 ...

  10. jenkins简单安装及配置(Windows环境)

    jenkins是一款跨平台的持续集成和持续交付.基于Java开发的开源软件,提供任务构建,持续集成监控的功能,可以使开发测试人员更方便的构建软件项目,提高工作效率. Windows平台下,一般安装方法 ...