【网络流24题21】最长k可重区间集问题
题面戳我
题目描述
对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
输入格式:
的第 1 行有 2 个正整数n和k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。
输出格式:
将计算出的最长 k可重区间集的长度输出
输入输出样例
输入样例#1:
4 2
1 7
6 8
7 10
9 13
输出样例#1:
15
说明
对于100%的数据,1≤n≤500,1≤k≤3
sol
费用流建图
先把点离散化掉
对于剩下的至多1000各点,每个点向下一个点连容量为k,费用为0的边。
对于每组\(l_i,r_i\),从\(l_i\)向\(r_i\)连容量为1,费用为长度(即\(r_i-l_i\))的边。
为了限流量所以源点\(S\)向离散化后第一个点连容量为k费用为0的边,最后一个点向汇点\(T\)连容量为k费用为0的边。(其实只要限一边就可以了)
然后上图中跑最大费用流,可以把费用全部取负然后跑最小费用流。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define inf 1000000000
const int _ = 100005;
struct edge{int to,next,w,cost;}a[_<<1];
int n,k,l[_],r[_],o[_],tot,s,t,head[_],cnt=1,vis[_],pe[_],pv[_];
long long dis[_],ans;
queue<int>Q;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
void link(int u,int v,int w,int cost)
{
a[++cnt]=(edge){v,head[u],w,cost};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],0,-cost};
head[v]=cnt;
}
bool spfa()
{
memset(dis,63,sizeof(dis));
dis[s]=0;Q.push(s);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
if (a[e].w&&dis[v]>dis[u]+a[e].cost)
{
dis[v]=dis[u]+a[e].cost;
pe[v]=e;pv[v]=u;
if (!vis[v]) vis[v]=1,Q.push(v);
}
}
vis[u]=0;
}
return dis[t]<dis[0];
}
int main()
{
n=gi();k=gi();
for (int i=1;i<=n;i++)
o[i]=l[i]=gi(),o[i+n]=r[i]=gi();
sort(o+1,o+2*n+1);
tot=unique(o+1,o+2*n+1)-o-1;
for (int i=1,L,R;i<=n;i++)
{
if (l[i]>r[i]) swap(l[i],r[i]);
L=lower_bound(o+1,o+tot+1,l[i])-o;
R=lower_bound(o+1,o+tot+1,r[i])-o;
link(L,R,1,l[i]-r[i]);
}
for (int i=1;i<tot;i++)
link(i,i+1,inf,0);
s=tot+1;t=tot+2;
link(s,1,k,0);link(tot,t,k,0);
while (spfa())
{
int sum=inf;
for (int i=t;i!=s;i=pv[i])
sum=min(sum,a[pe[i]].w);
for (int i=t;i!=s;i=pv[i])
a[pe[i]].w-=sum,a[pe[i]^1].w+=sum,ans+=1ll*sum*a[pe[i]].cost;
}
printf("%lld\n",-ans);
return 0;
}
【网络流24题21】最长k可重区间集问题的更多相关文章
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- 「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...
- 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)
题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...
- 网络流24题之最长k可重区间集问题
对于每个点向后一个点连流量为k费用为0的边 对每一区间连l到r流量为1费用为r-l的边 然后最小费用最大流,输出取反 一开始写的r-l+1错了半天... By:大奕哥 #include<bits ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
随机推荐
- javac编译乱码
PersonTest.java:1: 错误: 非法字符: \65279 解决途径如下 用记事本打开java源文件,另存为ANSI格式 如果java文件包含中文字符,使用-encoding gbk格式进 ...
- jenkins中使用rsync, scp命令
jenkins 中使用 rsync 命令 是出现一些错误输出 Host key verification failed. rsync: connection unexpectedly closed ( ...
- centos7设置静态ip
动态ip可以上网.静态ip设置成功后,发现不能上网. 1.首先查看动态ip的默认网关 cat /etc/resolv.conf 2.设置配置文件 在 /etc/sysconfig/network-sc ...
- Nginx调用远程php-fpm
在Nginx服务器的情况下,当我们输入 http://localhost:8080/index.php回车的时候 浏览器会将请求发送给Nginx,Nginx会根据我们所配置的以.php结尾的PHP的文 ...
- intellij idea maven 工程生成可执行的jar
新建maven 工程 写hello world 修改pom.xml 文件 <build> <pluginManagement> <plugins> <plug ...
- asp.net core 使用 swagger 生成接口文档
参考地址:http://www.cnblogs.com/daxnet/p/6181366.html http://www.jianshu.com/p/fa5a9b76f3ed 微软参考文档:https ...
- vue.js 安装过程(转载)
一.简介 Vue.js 是什么 Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的 渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核 ...
- iOS 添加WKWebView导致控制器无法释放的问题
在WkWebView与JavaScript交互中,经常会在原生中注入MessageHandler,app中注入MessageHandler的方法 WKWebViewConfiguration *con ...
- 基于数据形式说明杜兰特的技术特点的分析(含Python实现讲解部分)
---恢复内容开始--- 注: 本博文系原创,转载请标明原处. 题外话:春节过后,回到学校无所事事,感觉整个人都生锈一般,没什么动力,姑且称为"春节后遗症".在科赛官网得到关于NB ...
- iOS中蓝牙的使用
Core Bluetooth的使用 1,建立中心设备 2,扫描外设(Discover Peripheral) 3,连接外设(Connect Peripheral) 4,扫描外设中的服务和特征(Disc ...