题面戳我

题目描述

对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。

输入格式:

的第 1 行有 2 个正整数n和k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。

输出格式:

将计算出的最长 k可重区间集的长度输出

输入输出样例

输入样例#1:

4 2
1 7
6 8
7 10
9 13

输出样例#1:

15

说明

对于100%的数据,1≤n≤500,1≤k≤3

sol

费用流建图

先把点离散化掉

对于剩下的至多1000各点,每个点向下一个点连容量为k,费用为0的边。

对于每组\(l_i,r_i\),从\(l_i\)向\(r_i\)连容量为1,费用为长度(即\(r_i-l_i\))的边。

为了限流量所以源点\(S\)向离散化后第一个点连容量为k费用为0的边,最后一个点向汇点\(T\)连容量为k费用为0的边。(其实只要限一边就可以了)

然后上图中跑最大费用流,可以把费用全部取负然后跑最小费用流。

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define inf 1000000000
const int _ = 100005;
struct edge{int to,next,w,cost;}a[_<<1];
int n,k,l[_],r[_],o[_],tot,s,t,head[_],cnt=1,vis[_],pe[_],pv[_];
long long dis[_],ans;
queue<int>Q;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
void link(int u,int v,int w,int cost)
{
a[++cnt]=(edge){v,head[u],w,cost};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],0,-cost};
head[v]=cnt;
}
bool spfa()
{
memset(dis,63,sizeof(dis));
dis[s]=0;Q.push(s);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
if (a[e].w&&dis[v]>dis[u]+a[e].cost)
{
dis[v]=dis[u]+a[e].cost;
pe[v]=e;pv[v]=u;
if (!vis[v]) vis[v]=1,Q.push(v);
}
}
vis[u]=0;
}
return dis[t]<dis[0];
}
int main()
{
n=gi();k=gi();
for (int i=1;i<=n;i++)
o[i]=l[i]=gi(),o[i+n]=r[i]=gi();
sort(o+1,o+2*n+1);
tot=unique(o+1,o+2*n+1)-o-1;
for (int i=1,L,R;i<=n;i++)
{
if (l[i]>r[i]) swap(l[i],r[i]);
L=lower_bound(o+1,o+tot+1,l[i])-o;
R=lower_bound(o+1,o+tot+1,r[i])-o;
link(L,R,1,l[i]-r[i]);
}
for (int i=1;i<tot;i++)
link(i,i+1,inf,0);
s=tot+1;t=tot+2;
link(s,1,k,0);link(tot,t,k,0);
while (spfa())
{
int sum=inf;
for (int i=t;i!=s;i=pv[i])
sum=min(sum,a[pe[i]].w);
for (int i=t;i!=s;i=pv[i])
a[pe[i]].w-=sum,a[pe[i]^1].w+=sum,ans+=1ll*sum*a[pe[i]].cost;
}
printf("%lld\n",-ans);
return 0;
}

【网络流24题21】最长k可重区间集问题的更多相关文章

  1. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  2. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  3. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  4. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  5. 网络流24题:最长 k 可重区间集问题题解

    最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...

  6. 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集

    题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...

  7. 「网络流 24 题」最长 k 可重区间集

    给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...

  8. 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)

    题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...

  9. 网络流24题之最长k可重区间集问题

    对于每个点向后一个点连流量为k费用为0的边 对每一区间连l到r流量为1费用为r-l的边 然后最小费用最大流,输出取反 一开始写的r-l+1错了半天... By:大奕哥 #include<bits ...

  10. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

随机推荐

  1. 异步请求时有时会让js不起作用,那么重新加载js

    function reloadSmartMenu() { var jsElem = document.createElement('script'); jsElem.src= path+'/syste ...

  2. [Python Study Notes]匿名函数

    Python 使用 lambda 来创建匿名函数. lambda这个名称来自于LISP,而LISP则是从lambda calculus(一种符号逻辑形式)取这个名称的.在Python中,lambda作 ...

  3. phpMyAdmin的使用

    phpMyAdmin的使用 安装MySQL数据库后,用户即可在命令行提示符下进行创建数据库和数据表等各种操作,但这种方法非常麻烦,而且需要有专业的SQL语言知识.PHP官方开发了一个类似于SQL Se ...

  4. 【汇总】Linux常用脚本shell

    [crontab] #每天6:00 执行a.sh00 6 * * * /bin/sh /home/work/rxShell/a.sh #每天3:20 执行a1.sh20 3 * * * /bin/sh ...

  5. 阶乘之和 输入n,计算S=1!+2!+3!+…+n!的末6位(不含前导0)。n≤10 6 ,n!表示 前n个正整数之积。

    阶乘之和输入n,计算S=1!+2!+3!+…+n!的末6位(不含前导0).n≤10 6 ,n!表示前n个正整数之积.样例输入:10样例输出: package demo; import java.uti ...

  6. Yii2 灵活加载js、css

    Yii2.0对于CSS/js 管理,使用AssetBundle资源包类. 视图如何按需加载CSS/JS ? 资源包定义: backend/assets/AppAsset.PHP <?php na ...

  7. 老男孩Python全栈开发(92天全)视频教程 自学笔记21

    day21课程内容:  json: #序列化 把对象(变量)从内存中 编程可存储和可传输的过程 称为序列化import jsondic={'name':'abc','age':18}with open ...

  8. HDU - 1043 A* + 康托 [kuangbin带你飞]专题二

    这题我第一次用的bfs + ELFhash,直接TLE,又换成bfs + 康托还是TLE,5000ms都过不了!!我一直调试,还是TLE,我才发觉应该是方法的问题. 今天早上起床怒学了一波A*算法,因 ...

  9. 吾八哥学Selenium(四):操作下拉框select标签的方法

    我们在做web页面自动化测试的时候会经常遇到<select></select>标签的下拉框,那么在Python里如何实现去操作这种控件呢?今天就给大家分享一下这个玩法.为了让大 ...

  10. 用感知机(Perceptron)实现逻辑AND功能的Python3代码

    之所以写这篇随笔,是因为参考文章(见文尾)中的的代码是Python2的,放到Python3上无法运行,我花了些时间debug,并记录了调试经过. 参考文章中的代码主要有两处不兼容Python3,一个是 ...