[Luogu2973][USACO10HOL]赶小猪
sol
首先解释一波这道题无重边无自环
设\(f_i\)表示\(i\)点上面的答案。
方程
\]
\(f_1\)的那个方程加一个\(\frac PQ\)常数项
code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N = 305;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
struct edge{int to,next;}a[N*N<<1];
int n,m,head[N],cnt;
double p,f[N][N],du[N],sol[N];
int main()
{
n=gi();m=gi();
p=(double)gi()/(double)gi();
for (int i=1,u,v;i<=m;i++)
{
u=gi();v=gi();
a[++cnt]=(edge){v,head[u]};head[u]=cnt;
a[++cnt]=(edge){u,head[v]};head[v]=cnt;
du[u]+=1.0;du[v]+=1.0;
}
f[1][n+1]=p;
for (int u=1;u<=n;u++)
{
f[u][u]=1;
for (int e=head[u];e;e=a[e].next)
f[u][a[e].to]-=(1-p)/du[a[e].to];
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
for (int k=n+1;k>=i;k--)
f[j][k]-=f[i][k]*f[j][i]/f[i][i];
for (int i=n;i;i--)
{
sol[i]=f[i][n+1];
for (int j=n;j>i;j--)
sol[i]-=f[i][j]*sol[j];
sol[i]/=f[i][i];
}
for (int i=1;i<=n;i++) printf("%.9lf\n",sol[i]);
return 0;
}
[Luogu2973][USACO10HOL]赶小猪的更多相关文章
- [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- 小猪cms微信二次开发之怎样分页
$db=D('Classify'); $zid=$db->where(array('id'=>$this->_GET('fid'),'token'=>$this->tok ...
随机推荐
- 像我这样优雅地进行Spring整合MongoDB
本文重点是要将mongodb与spring整合到项目中去,在实践中发现问题,追踪问题,然后解决问题. 一.准备 Maven.Spring(spring-data-mongodb) spring Dat ...
- python入门学习笔记(一)
写在开头: A:python的交互式环境 ...
- Dynamics CRM 2015-Ribbon In Basic Home Tab
前文中有说到关于Form上Ribbon的配置以及控制,而Ribbon Button还可以在其它地方的配置,今天就来说说在Basic Home Tab里面的配置,效果图如下: 具体配置Customiza ...
- ECharts 高度宽度自适应(转载)
最近在写一个地图类的应用,用的是echarts的图表,然而一上来就一脸懵逼,如果父级容器的height/width属性设置为百分比的形式,那么echarts就会warning,且不能正常的生成图表.所 ...
- STAThread 和 MTAThread
STAThread:single threaded apartment 直译过来是:单线程单元套间 MTAThread:multiple threaded apartment 直译过来是:多线程单元套 ...
- JS标签的各种事件的举例
1.鼠标单击事件( onclick ) <!DOCTYPE HTML> <html> <head> <meta http-equiv="Conten ...
- 几种优化ajax的执行速度的方法
1.尽量使用局部的变量,而不使用全局变量: 2.优化for循环 3.尽量少用eval,每次使用eval都需要消耗大量的时间: 4.将DOM节点放在文档上. 5.尽量减少点好(.)操作符号的使用
- Jenkins系列——使用checkstyle进行代码规范检查
1.目标 通过jenkins使用checkstyle对代码进行规范检查并生成html报告. 构建采用shell. 2.环境 checkstyle5.7(如果是Linux版本选用tar.gz格式) ap ...
- Vscode 插件
HTML Snippets Markdown All in One Markdown PDF Markdown Priview Enhanced Markdown TOC Open HTML in D ...
- nignx笔记1
上图是单版的架构,理论一个tomcat并发就200到300,经过优化后的最多500,这很明显容量低,而且出现单点故障后应用服务就不可以访问了,比如tomcat,这样明显对于多并发是不行的. 那么如果我 ...