SQL to Java code for Elasticsearch
Elasticsearch虽然定位为Search Engine,但是因其可以持久化数据,很多时候,我们把Elasticsearch当成Database用,但是Elasticsearch不支持SQL,就需要把SQL逻辑转换成代码实现对应的功能。
以下列举了一些常用的SQL转换成对应的Java代码。
1.按某个field group by查询count
SELECT
fieldA, COUNT(fieldA)
from table
WHERE fieldC = "hoge"
AND fieldD = "huga"
AND fieldB > 10
AND fieldB < 100
group by fieldA;
对应的java code:
SearchRequestBuilder searchReq = client.prepareSearch("sample_index");
searchReq.setTypes("sample_types");
TermsBuilder termsb = AggregationBuilders.terms("my_fieldA").field("fieldA").size(100);
BoolFilterBuilder bf = FilterBuilders.boolFilter();
TermFilterBuilder tf_fieldC = FilterBuilders.termFilter("fieldC","hoge");
TermFilterBuilder tf_fieldD = FilterBuilders.termFilter("fieldD","huga");
bf.must(tf_fieldC);
bf.must(tf_fieldD);
RangeFilterBuilder rangefieldBFilter = FilterBuilders.rangeFilter("fieldB")
.gt(10)
.lt(100);
searchReq.setQuery(QueryBuilders.filteredQuery(QueryBuilders.matchAllQuery(),
FilterBuilders.andFilter(bf, rangefieldBFilter))).addAggregation(
termsb);
SearchResponse searchRes = searchReq.execute().actionGet();
Terms fieldATerms = searchRes.getAggregations().get("my_fieldA");
for (Terms.Bucket filedABucket : fieldATerms.getBuckets()) {
//fieldA
String fieldAValue = filedABucket.getKey();
//COUNT(fieldA)
long fieldACount = filedABucket.getDocCount();
}
2. 按某个field 和 date group by 并查询另一个filed的sum,时间统计图,时间间隔是1天。
SELECT
DATE(create_at), fieldA, SUM(fieldB)
from table
group by DATE(create_at), fieldA;
对应的java code:
SearchRequestBuilder searchReq = client.prepareSearch("sample_index");
searchReq.setTypes("sample_types");
DateHistogramBuilder dhb = AggregationBuilders.dateHistogram("my_datehistogram").field("create_at").interval(DateHistogram.Interval.days(1));
TermsBuilder termsb_fa = AggregationBuilders.terms("my_fieldA").field("fieldA").size(100);
termsb_fa.subAggregation(AggregationBuilders.sum("my_sum_fieldB").field("fieldB"));
dhb.subAggregation(termsb_fa)
searchReq.setQuery(QueryBuilders.matchAllQuery()).addAggregation(dhb);
SearchResponse searchRes = searchReq.execute().actionGet();
DateHistogram dateHist = searchRes.getAggregations().get("my_datehistogram");
for (DateHistogram.Bucket dateBucket : dateHist.getBuckets()) {
//DATE(create_at)
String create_at = dateentry.getKey();
Terms fieldATerms = dateBucket.getAggregations().get("my_fieldA");
for (Terms.Bucket filedABucket : fieldATerms.getBuckets()) {
//fieldA
String fieldAValue = filedABucket.getKey();
//SUM(fieldB)
Sum sumagg = filedABucket.getAggregations().get("my_sum_fieldB");
long sumFieldB = (long)sumagg.getValues();
}
}
3. 按两个field group by并查询第三个filed的sum
SELECT
fieldA, fieldC, SUM(fieldB)
from table
group by fieldA, fieldC;
对应的java code:
SearchRequestBuilder searchReq = client.prepareSearch("sample_index");
searchReq.setTypes("sample_types");
TermsBuilder termsb_fa = AggregationBuilders.terms("my_fieldA").field("fieldA").size(100);
TermsBuilder termsb_fc = AggregationBuilders.terms("my_fieldC").field("fieldC").size(50);
termsb_fc.subAggregation(AggregationBuilders.sum("my_sum_fieldB").field("fieldB"));
termsb_fa.subAggregation(termsb_fc)
searchReq.setQuery(QueryBuilders.matchAllQuery()).addAggregation(termsb_fa);
SearchResponse searchRes = searchReq.execute().actionGet();
Terms fieldATerms = searchRes.getAggregations().get("my_fieldA");
for (Terms.Bucket filedABucket : fieldATerms.getBuckets()) {
//fieldA
String fieldAValue = filedABucket.getKey();
Terms fieldCTerms = filedABucket.getAggregations().get("my_fieldC");
for (Terms.Bucket filedCBucket : fieldCTerms.getBuckets()) {
//fieldC
String fieldCValue = filedCBucket.getKey();
//SUM(fieldB)
Sum sumagg = filedCBucket.getAggregations().get("my_sum_fieldB");
long sumFieldB = (long)sumagg.getValues();
}
}
4. 按某个filed group by 并查询count、sum 和 average
SELECT
fieldA, COUNT(fieldA), SUM(fieldB), AVG(fieldB)
from table
group by fieldA;
对应的java code:
SearchRequestBuilder searchReq = client.prepareSearch("sample_index");
searchReq.setTypes("sample_types");
TermsBuilder termsb = AggregationBuilders.terms("my_fieldA").field("fieldA").size(100);
termsb.subAggregation(AggregationBuilders.sum("my_sum_fieldB").field("fieldB"));
termsb.subAggregation(AggregationBuilders.avg("my_avg_fieldB").field("fieldB"));
searchReq.setQuery(QueryBuilders.matchAllQuery()).addAggregation(termsb);
SearchResponse searchRes = searchReq.execute().actionGet();
Terms fieldATerms = searchRes.getAggregations().get("my_fieldA");
for (Terms.Bucket filedABucket : fieldATerms.getBuckets()) {
//fieldA
String fieldAValue = filedABucket.getKey();
//COUNT(fieldA)
long fieldACount = filedABucket.getDocCount();
//SUM(fieldB)
Sum sumagg = filedABucket.getAggregations().get("my_sum_fieldB");
long sumFieldB = (long)sumagg.getValues();
//AVG(fieldB)
Avg avgagg = filedABucket.getAggregations().get("my_avg_fieldB");
double avgFieldB = avgagg.getValues();
}
5. 按某个field group by 并按另一个filed的Sum排序,获取前10
SELECT
fieldA, SUM(fieldB)
from table
WHERE fieldC = "hoge"
group by fieldA
order by SUM(fieldB) DESC
limit 10;
对应的java code:
QueryBuilder termsc = QueryBuilders.termQuery("fieldC","hoge");
QueryBuilder queryBuilder = QueryBuilders.boolQuery().must(termsc);
TermsAggregationBuilder aggregationBuilder = AggregationBuilders.terms("my_fieldA").field("fieldA").size(10);
aggregationBuilder.subAggregation(AggregationBuilders.sum("my_sum_fieldB").field("fieldB"));
aggregationBuilder.order(Order.aggregation("my_sum_fieldB", false));
SearchResponse searchResponse = client.prepareSearch("sample_index").setQuery(queryBuilder).addAggregation(aggregationBuilder).execute().actionGet();
Terms terms = searchResponse.getAggregations().get("my_fieldA");
for (Terms.Bucket entry : terms.getBuckets()) {
String fieldAValue = entry.getKey().toString();
Sum sumagg = entry.getAggregations().get("my_sum_fieldB");
double fieldValue = sumagg.getValue();
}
代码在GitHub上:https://github.com/luxiaoxun/Code4Java
SQL to Java code for Elasticsearch的更多相关文章
- Java中使用elasticsearch搜索引擎实现简单查询、修改等操作-已在项目中实际应用
以下的操作环境为:jdk:1.8:elasticsearch:5.2.0 maven架包下载坐标为: <dependency> <groupId>org.elasticsear ...
- A java code
With the help of LiJun I got a piece of JAVA code. With this code, I can do below things like connec ...
- Elasticsearch入门系列~通过Java一系列操作Elasticsearch
Elasticsearch索引的创建.数据的增删该查操作 上一章节已经在Linux系统上安装Elasticsearch并且可以外网访问,这节主要通过Java代码操作Elasticsearch 1.创建 ...
- Java语言编码规范(Java Code Conventions)
Java语言编码规范(Java Code Conventions) 名称 Java语言编码规范(Java Code Conventions) 译者 晨光(Morning) 简介 本文档讲述了Java语 ...
- java code to byte code--partone--reference
Understanding how Java code is compiled into byte code and executed on a Java Virtual Machine (JVM) ...
- [转]Java Code Examples for android.util.JsonReader
[转]Java Code Examples for android.util.JsonReader The following are top voted examples for showing h ...
- JUnit单元测试教程(翻译自Java Code Geeks)
JUnit单元测试教程--终极指南 JUnit单元测试教程终极指南 说明 单元测试简介 1 什么是单元测试 2 测试覆盖 3 Java中的单元测试 JUnit简介 1 使用Eclipse实现简单JUn ...
- Java Code Style
近期困惑于团队成员代码风格迥异,代码质量不可控,作为一名老司机,忧患于后期服务的可维护性,多次一对一的代码Review,耗时耗力不说,效果也不明显.痛定思痛,多次反思之后得出结论:无规矩不成方圆,可靠 ...
- 使用Java客户端操作elasticsearch(二)
承接上文,使用Java客户端操作elasticsearch,本文主要介绍 常见的配置 和Sniffer(集群探测) 的使用. 常见的配置 前面已介绍过,RestClientBuilder支持同时提供一 ...
随机推荐
- 如何使用一次for循环得到数组中第二大的数和第三大的数
装载声明:http://blog.csdn.net/lxsmk9059/article/details/77920206?locationNum=1&fps=1 ,,,,,,,,}; ]; ] ...
- postman简单教程-环境变量,全局变量的设置及作用
讲postman环境变量设置之前,先讲一个小插曲,环境变量.全局变量的区别在于Globals,只能用一组,而Environmen可以设置多组,所以我更喜欢设置环境变量 1.环境变量-Environme ...
- java开发常用技术
基础部分 1. 线程和进程的区别 线程三个基本状态:就绪.执行.阻塞 线程五个基本操作:创建.就绪.运行.阻塞.终止 进程四种形式:主从式.会话式.消息或邮箱机制.共享存储区方式 进程是具有一定功能的 ...
- zip详解
http://www.360doc.com/content/06/0915/14/10610_208147.shtml
- sqlserver 简单的创建数据库
简简单单,作为不是牛逼的程序来说,这是很容易忘记的sql语句: use mastergo --判断是否存在该数据库if exists(select *from Sysdatabases where n ...
- lua 二维数组创建
local arr= {} for i=1, 4 do arr[i] = {} end 使用时可以直接使用arr[i][j]
- [Scala] 了解 协变 与 逆变
首先定义一个类 A,其参数类型 T 为协变,类中包含一个方法 func,该方法有一个类型为 T 的参数: class A[+T] { def func(x: T) {} } 此时在 x 处会有异常提示 ...
- python中Properties的一些小用法
property最大的用处就是可以为一个属性制定getter,setter,delete和doc,他的函数原型为: def __init__(self, fget=None, fset=None, f ...
- Beta版本敏捷冲刺每日报告——Day4
1.情况简述 Beta阶段第四次Scrum Meeting 敏捷开发起止时间 2017.11.5 08:00 -- 2017.11.5 22:00 讨论时间地点 2017.11.5晚9:00,软工所实 ...
- Vue-cli+Vue.js2.0+Vuex2.0+vue-router+es6+webpack+node.js脚手架搭建和Vue开发实战
Vue.js是一个构建数据驱动的web界面的渐进式框架.在写这边文章时Vue版本分为1.0++和2.0++,这个是基于Vue2.0的项目. Vue-cli是构建单页应用的脚手架,这个可是官方的. Vu ...