每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~

———————————————————————————

本笔记来源于CDA DSC,L2-R语言课程所学进行的总结。

一、介绍:梯度提升树(Gradient Boost Decision Tree)

Boosting算法和树模型的结合。按次序建立多棵树,每棵树都是为了减少上一次的残差(residual),每个新的模型的建立都是为了使之前模型的残差往梯度方向减少。最后将当前得到的决策树与之前的那些决策树合并起来进行预测。

相比随机森林有更多的参数需要调整。

————————————————————————————————————————————————————————————

二、随机森林与梯度提升树(GBDT)区别

随机森林:决策树+bagging=随机森林

梯度提升树:决策树Boosting=GBDT

两者区别在于bagging boosting之间的区别,可见:

bagging

boosting

取样方式

bagging采用均匀取样

boosting根据错误率来采样

精度、准确性

相比之,较低

训练集选择

随机的,各轮训练集之前互相独立

各轮训练集的选择与前面各轮的学习结果相关

预测函数权重

各个预测函数没有权重

boost有权重

函数生成顺序

并行生成

顺序生成

应用

象神经网络这样极为消耗时间的算法,bagging可通过并行节省大量的时间开销

baging和boosting都可以有效地提高分类的准确性

baging和boosting都可以有效地提高分类的准确性

一些模型中会造成模型的退化(过拟合)

boosting思想的一种改进型adaboost方法在邮件过滤,文本分类中有很好的性能

随机森林

梯度提升树

————————————————————————————————————————————————————————————


三、R中与决策树有关的Package

单棵决策树:rpart/tree/C50
随机森林:randomforest/ranger
梯度提升树:gbm/xgboost
树的可视化:rpart.plot

每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~

———————————————————————————

笔记︱决策树族——梯度提升树(GBDT)的更多相关文章

  1. scikit-learn 梯度提升树(GBDT)调参笔记

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  2. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  3. 梯度提升树(GBDT)原理小结(转载)

    在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...

  4. 机器学习 之梯度提升树GBDT

    目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaB ...

  5. 梯度提升树(GBDT)原理小结

    在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting De ...

  6. 梯度提升树GBDT算法

    转自https://zhuanlan.zhihu.com/p/29802325 本文对Boosting家族中一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 简 ...

  7. 梯度提升树GBDT总结

    提升树的学习优化过程中,损失函数平方损失和指数损失时候,每一步优化相对简单,但对于一般损失函数优化的问题,Freidman提出了Gradient Boosting算法,其利用了损失函数的负梯度在当前模 ...

  8. 机器学习(七)—Adaboost 和 梯度提升树GBDT

    1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类 ...

  9. GBDT(梯度提升树)scikit-klearn中的参数说明及简汇

    1.GBDT(梯度提升树)概述: GBDT是集成学习Boosting家族的成员,区别于Adaboosting.adaboosting是利用前一次迭代弱学习器的误差率来更新训练集的权重,在对更新权重后的 ...

随机推荐

  1. JVM类加载机制---类加载的过程

    一.类加载的时机 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用.卸载 7个阶段,其中验证.准备.解析 3个部分统称为 连接. 二.具体步骤 ...

  2. 浅谈计算机中的IO模型

    IO模型一共有5种: blocking IO #阻塞IO nonblocking IO #非阻塞IO IO myltiplexing #IO多路复用 signal driven IO #信号驱动IO ...

  3. Trusted Execution Technology (TXT) --- 度量(Measurement)篇

    版权声明:本文为博主原创文章,未经博主允许不得转载.http://www.cnblogs.com/tsec/p/8413537.html 0. 导读 TXT基本原理篇介绍了TXT安全度量的基本概念,包 ...

  4. 如何实现Selenium自动化读取H5手机缓存

    更多原创测试技术文章同步更新到微信公众号 :三国测,敬请扫码关注个人的微信号,感谢! 原文链接:http://www.cnblogs.com/zishi/p/6890675.html 前言: 由于Se ...

  5. 第一个 HTML5Plus 移动应用

    什么是 HTML5Plus 移动应用 HTML5 Plus移动App,简称5+App,是一种基于HTML.JS.CSS编写的运行于手机端的App,这种App可以通过扩展的JS API任意调用手机的原生 ...

  6. 用Elasticsearch构建电商搜索平台,一个极有代表性的基础技术架构和算法实践案例[转]

    原文链接:http://mp.weixin.qq.com/s?__biz=MzA5NzkxMzg1Nw==&mid=2653160642&idx=1&sn=608f4e6883 ...

  7. bzoj 4836: 二元运算

    死活TLE....求助 update 4.3 23:08 求助了tls之后终于过了...分治里次数界写崩了...r-l+1就行... 分治的做法很神奇!本题的限制在于操作类型与权值相对大小有关,而用[ ...

  8. 注册表操作(VC_Win32)

    注册表操作(VC_Win32) 数据类型 注册表的数据类型主要有以下四种:显示类型(在编辑器中)  数据类型  说明 REG_SZ  字符串  文本字符串REG_MULTI_SZ     多字符串   ...

  9. 用es6的Array.reduce()方法计算一个字符串中每个字符出现的次数

    有一道经典的字符串处理的问题,统计一个字符串中每个字符出现的次数. 用es6的Array.reduce()函数配合“...”扩展符号可以更方便的处理该问题. s='abananbaacnncn' [. ...

  10. php+redis 学习 一 连接

    <?php header('content-type:text/html;chaeset=utf-8'); $redis = new Redis(); $redis->connect('1 ...