题目描述

有 nn 件工作要分配给 nn 个人做。第 ii 个人做第 jj 件工作产生的效益为 c_{ij}cij​ 。试设计一个将 nn 件工作分配给 nn个人做的分配方案,使产生的总效益最大。

输入输出格式

输入格式:

 

文件的第 11 行有 11 个正整数 nn,表示有 nn 件工作要分配给 nn 个人做。

接下来的 nn 行中,每行有 nn 个整数 c_{ij}cij​​​,表示第 ii 个人做第 jj 件工作产生的效益为 c_{ij}cij​。

 


输出格式:

 

两行分别输出最小总效益和最大总效益。

 

输入输出样例

输入样例#1: 复制

5
2 2 2 1 2
2 3 1 2 4
2 0 1 1 1
2 3 4 3 3
3 2 1 2 1
输出样例#1: 复制

5
14

说明

1 \leq n \leq 1001≤n≤100

一个人只能修一个工件

这是一个裸题,和刚刚那个题目很像,很简单。不过我的写法依然很复杂。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
#include <map>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 2e5 + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t, exa[maxn];
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
//printf("%d %d %d %d\n", u, v, c, cost);
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, ll &cost)
{
memset(d, 0xef, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] < d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
// printf("d[%d]=%d d[%d]=%d %d d[%d]=%d\n", v,d[v],u, d[u], now.cost,v,d[u]+now.cost);
// printf("%d %d %d %d %d %d\n", u, now.u, now.v, now.c, now.f, now.cost);
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
// printf("a=%d d=%d\n", a[t], d[t]);
if (d[t] < )return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += 1ll * d[t] * 1ll * a[t];//距离乘上到达汇点的流量就是费用
// printf("cost=%lld\n", cost);
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int Maxflow(int s, int t, ll & cost)
{
memset(p, , sizeof(p));
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
} bool bellman1(int s, int t, int& flow, long long & cost)
{
memset(d, inf, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int Minflow(int s, int t, long long & cost)
{
memset(p, , sizeof(p));
cost = ;
int flow = ;
while (bellman1(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int qc[][];
int main()
{
int n;
cin >> n;
s = , t = * n + ;
for (int i = ; i <= n; i++) for (int j = ; j <= n; j++) cin >> qc[i][j];
for (int i = ; i <= n; i++) add(s, i, , );
for (int i = ; i <= n; i++) add(i, i + n, , );
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
add(i + n, j + * n, , qc[i][j]);
}
}
for (int i = ; i <= n; i++) add( * n + i, t, , );
ll cost = ;
int ans = Minflow(s, t, cost);
printf("%lld\n", cost);
init();
for (int i = ; i <= n; i++) add(s, i, , );
for (int i = ; i <= n; i++) add(i, i + n, , );
for (int i = ; i <= n; i++)
{
for (int j = ; j <= n; j++)
{
add(i + n, j + * n, , qc[i][j]);
}
}
for (int i = ; i <= n; i++) add( * n + i, t, , );
cost = ;
ans = Maxflow(s, t, cost);
printf("%lld\n", cost);
return ;
}

P4014 分配问题 网络流的更多相关文章

  1. 洛谷P4014分配问题——网络流24题

    题目:https://www.luogu.org/problemnew/show/P4014 最大/小费用最大流裸题. 代码如下: #include<iostream> #include& ...

  2. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

  3. 洛谷——P4014 分配问题

    P4014 分配问题 题目描述 有 nn 件工作要分配给 nn 个人做.第 ii 个人做第 jj 件工作产生的效益为 c_{ij}cij​ .试设计一个将 nn 件工作分配给 nn 个人做的分配方案, ...

  4. Luogu P4014 「 网络流 24 题 」分配问题

    解题思路 还是建立超级源点和超级汇点,又因为题目给出规定一个人只能修一个工件,所以建图的时候还要讲容量都设为$1$. 人的编号是$1\rightarrow n$,工件的编号是$n+1\rightarr ...

  5. 洛谷P4014 分配问题(费用流)

    传送门 可以把原图看做一个二分图,人在左边,任务在右边,求一个带权的最大和最小完美匹配 然而我并不会二分图做法,所以只好直接用费用流套进去,求一个最小费用最大流和最大费用最大流即可 //minamot ...

  6. P4014 分配问题

    \(\color{#0066ff}{题目描述}\) 有 \(n\) 件工作要分配给 \(n\) 个人做.第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(c_{ij}\) .试设计一个将 ...

  7. 洛谷 P4014 分配问题 【最小费用最大流+最大费用最大流】

    其实KM更快--但是这道题不卡,所以用了简单粗暴的费用流,建图非常简单,s向所有人连流量为1费用为0的边来限制流量,所有工作向t连流量为1费用为0的边,然后对应的人和工作连(i,j,1,cij),跑一 ...

  8. 洛谷P4014 分配问题(费用流)

    题目描述 有 nn 件工作要分配给 nn 个人做.第 ii 个人做第 jj 件工作产生的效益为 c_{ij}cij​ .试设计一个将 nn 件工作分配给 nn 个人做的分配方案,使产生的总效益最大. ...

  9. luogu P4014 分配问题

    简单的费用流问题,每个人对每个任务连边,每个任务对汇点连,源点对每个人连,最大费用取反即可 #include<bits/stdc++.h> using namespace std; #de ...

随机推荐

  1. redis缓存清除

    1.redis根目录调出命令行(cmd) 2.登录redis:redis-cli -h 127.0.0.1 -p 6379 3.查看所有key值:keys * 4.删除指定索引的值:del key 5 ...

  2. Storm入门(十)Twitter Storm: Transactional Topolgoy简介

    作者: xumingming | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明网址: http://xumingming.sinaapp.com/736/twitter-stor ...

  3. MIP开发教程(一) MIP-CLI工具安装与环境部署

    依赖安装 安装 MIP-CLI 创建开发文件结构 1. 依赖安装 MIP-CLI 使用 NPM 安装,依赖 node 环境: node 安装-windows node 安装-mac MIP-CLI 开 ...

  4. 移动设备分辨率(终于弄懂了为什么移动端设计稿总是640px和750px)

    在我开始写移动端页面至今,一直有2个疑问困扰着我,我只知道结果但不知道为什么 问题1:为什么设计师给的设计稿总是640px或750px(现在一般以Phone6为基准,给的750px) 问题2:为什么我 ...

  5. wtf!rds数据同步居然出问题了--菜鸟db的数据修复历程

    由于一次上线操作的数据变更太多,导致执行时间很长! 由于做手动主从关系,所以操作落在了主库上. 由于主从关系不是对整个库的操作,所以在有表新增的地方,添加了dts新的同步关系. db变更完成后,就发布 ...

  6. shell if条件判断中:双中括号与单中括号的区别

    电脑重装了系统,登录虚拟机的shell脚本需重写,在为编写的脚本命名时发现存在同名脚本,才想起来是连接公司服务器的登录脚本,不想写俩脚本,怕记混了,那就整合一下.代码如下: #!/bin/bash#z ...

  7. 5.Flask-Migrate

    1.1.项目结构重构 (1)config.py DB_URI = "mysql+pymysql://root:123456@127.0.0.1:3306/flask_migrate?char ...

  8. 【Android Studio安装部署系列】三十七、从Android Studio3.2升级到Android Studio3.4【以及创建Android Q模拟器】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 保持Android Studio开发环境的最新版本. 下载Android Studio3.4 使用Android Studio自带的 ...

  9. java~springboot~gradle里的docker集成

    在springboot里,我们的task任务可以添加docker构建的功能,在gradle集成环境里,直接可以实现编译,测试,打包镜像的流水线作业,很是方便! 下面分享给大家,在gradle里添加do ...

  10. Keras入门(四)之利用CNN模型轻松破解网站验证码

    项目简介   在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字.   让我们一起回顾一下那篇文 ...