The Fortified Forest
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6400   Accepted: 1808

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation. 
Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer n, 2 <= n <= 15, the number of trees in the forest. The trees are identified by consecutive integers 1 to n. Each of the subsequent n lines contains 4 integers xi, yi, vi, li that describe a single tree. (xi, yi) is the position of the tree in the plane, vi is its value, and li is the length of fence that can be built using the wood of the tree. vi and li are between 0 and 10,000. 
The input ends with an empty test case (n = 0). 

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter. 
Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00

Source

 

题意:每棵树坐标价值长度,砍掉一些树把剩下的围起来,最小价值最小数量问砍掉了那些树以及剩下的长度

二进制枚举然后把没砍的扔一起求凸包行了
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,INF=1e9;
const double eps=1e-;
const double pi=acos(-); inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
//return x<a.x||(x==a.x&&y<a.y);
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double DisPP(Point a,Point b){
Point t=b-a;
return sqrt(t.x*t.x+t.y*t.y);
} int cas=;
int n,x,y,v[N],l[N];
double ans;
Point p[N],ch[N],rp[N];
int rn; double ConvexHull(Point p[],int n,Point ch[]){
sort(p+,p++n);
int m=,cnt=;
for(int i=;i<=n;i++) {
while(m>&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
int k=m;
for(int i=n-;i>=;i--) {
while(m>k&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
if(n>) m--;
double ans=;
for(int i=;i<=m;i++) ans+=DisPP(ch[i],ch[i%m+]);
return ans;
} void solve(){
int ansV=INF,ansS=,ansCnt=INF,S=(<<n);
double extra;
for(int i=;i<S;i++){
double len=;
int val=,cnt;
rn=;
for(int j=;j<n;j++){
if(i&(<<j)){
j++;
len+=l[j],val+=v[j],cnt++;
j--;
}else rp[++rn]=p[j+];
}
if(val>ansV||(val==ansV&&cnt>ansCnt)) continue;
double peri=ConvexHull(rp,rn,ch);
if(sgn(peri-len)>) continue;
if(val<ansV||(val==ansV&&cnt<ansCnt)){
ansV=val;
ansS=i;
ansCnt=cnt;
extra=len-peri;
}
}
printf("Forest %d\nCut these trees: ",++cas);
for(int j=;j<=;j++) if(ansS&(<<j)) printf("%d ",j+);
printf("\nExtra wood: ");
printf("%.2f\n\n",extra);
} int main(int argc, const char * argv[]) {
while(scanf("%d",&n)!=EOF&&n){
for(int i=;i<=n;i++) p[i].x=read(),p[i].y=read(),v[i]=read(),l[i]=read();
solve();
}
return ;
}
 

POJ 1873 The Fortified Forest [凸包 枚举]的更多相关文章

  1. POJ 1873 The Fortified Forest(枚举+凸包)

    Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...

  2. POJ 1873 The Fortified Forest 凸包 二进制枚举

    n最大15,二进制枚举不会超时.枚举不被砍掉的树,然后求凸包 #include<stdio.h> #include<math.h> #include<algorithm& ...

  3. POJ 1873 - The Fortified Forest 凸包 + 搜索 模板

    通过这道题发现了原来写凸包的一些不注意之处和一些错误..有些错误很要命.. 这题 N = 15 1 << 15 = 32768 直接枚举完全可行 卡在异常情况判断上很久,只有 顶点数 &g ...

  4. poj1873 The Fortified Forest 凸包+枚举 水题

    /* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...

  5. ●POJ 1873 The Fortified Forest

    题链: http://poj.org/problem?id=1873 题解: 计算几何,凸包 枚举被砍的树的集合.求出剩下点的凸包.然后判断即可. 代码: #include<cmath> ...

  6. 简单几何(凸包+枚举) POJ 1873 The Fortified Forest

    题目传送门 题意:砍掉一些树,用它们做成篱笆把剩余的树围起来,问最小价值 分析:数据量不大,考虑状态压缩暴力枚举,求凸包以及计算凸包长度.虽说是水题,毕竟是final,自己状压的最大情况写错了,而且忘 ...

  7. POJ 1873 The Fortified Forest(凸包)题解

    题意:二维平面有一堆点,每个点有价值v和删掉这个点能得到的长度l,问你删掉最少的价值能把剩余点围起来,价值一样求删掉的点最少 思路:n<=15,那么直接遍历2^15,判断每种情况.这里要优化一下 ...

  8. POJ 1873 The Fortified Forest

    题意:是有n棵树,每棵的坐标,价值和长度已知,要砍掉若干根,用他们围住其他树,问损失价值最小的情况下又要长度足够围住其他树,砍掉哪些树.. 思路:先求要砍掉的哪些树,在求剩下的树求凸包,在判是否可行. ...

  9. Uva5211/POJ1873 The Fortified Forest 凸包

    LINK 题意:给出点集,每个点有个价值v和长度l,问把其中几个点取掉,用这几个点的长度能把剩下的点围住,要求剩下的点价值和最大,拿掉的点最少且剩余长度最长. 思路:1999WF中的水题.考虑到其点的 ...

随机推荐

  1. c++(单向链表)

    有的时候,处于内存中的数据并不是连续的.那么这时候,我们就需要在数据结构中添加一个属性,这个属性会记录下面一个数据的地址.有了这个地址之后,所有的数据就像一条链子一样串起来了,那么这个地址属性就起到了 ...

  2. Spring框架学习笔记(9)——Spring对JDBC的支持

    一.使用JdbcTemplate和JdbcDaoSupport 1.配置并连接数据库 ①创建项目并添加jar包,要比之前Spring项目多添加两个jar包c3p0-0.9.1.2.jar和mysql- ...

  3. jq实现上传头像并实时预览功能

    效果 页面结构 <form action="" name="form0" id="form0"> <input type= ...

  4. UEP-级联查询

    级联查询在UEP中采用动态下拉的形式,cascadeid为关键字,注意jsp页面的id的相互嵌套关系,数据库字段的数值的设置,和动态下拉SQL语句的书写.本功能实现了省市区的三级联动查询

  5. 微信小程序多列选择器之range-key

    <picker mode="multiSelector" bindchange="bindMultiPickerChange2" bindcolumnch ...

  6. Actor-ES框架:Ray

    并发 1. 并发和并行 并发:两个或多个任务在同一时间段内运行.关注点在任务分割. 并行:两个或多个任务在同一时刻同时运行.关注点在同时执行. 本文大多数情况下不会严格区分这两个概念,默认并发就是指并 ...

  7. Tp框架查询分页显示与全部查询出来显示运行时间快慢有区别吗?

    8:08:01 青春阳光 2017/4/7 8:08:01 大神在吗? Tp框架查询分页显示与全部查询出来显示运行时间快慢有区别吗? 青春阳光 2017/4/7 8:08:20 还有个问题,上传到pu ...

  8. 织梦DEDECMS更换目录后页面内的图片和缩略图无法显示解决方法

    http://www.win8f.com/seoyouhua/6609.html 很多人碰到织梦更换目录后内容图片和缩略图无法显示的问题,在此,慧鸿网络特地搜集整理了一篇关于织梦出现缩略图和内容无法显 ...

  9. 机器学习——kNN(1)基本原理

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  10. java中的nextLine

    package scanner; import java.util.Scanner; public class NextLine { public static void main(String[] ...