1502: [NOI2005]月下柠檬树

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1070  Solved: 596
[Submit][Status][Discuss]

Description

Input

文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。输入的所有实数的小数点后可能包含1至10位有效数字。

Output

输出1个实数,表示树影的面积。四舍五入保留两位小数。

Sample Input

2 0.7853981633
10.0 10.00 10.00
4.00 5.00

Sample Output

171.97

HINT

1≤n≤500,0.3


我一定是在做数学!!!!

%%%Claude画图真好看 http://blog.csdn.net/wzq_qwq/article/details/48310417

把每条线段和每个点的投影找出来,然后计算F函数时遍历所有线段和圆找最大值行了

这里的线保存了k和b,解析几何的感觉

找点和圆的切线用了射影定理,小新讲过然而并不会(因为我只会三角形相似),又去学了一下

概述图中,在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:
BD²=AD·CD
AB²=AC·AD
BC²=CD·AC

找圆的公切线直接用三角函数....

//
// main.cpp
// bzoj1502
//
// Created by Candy on 2017/2/1.
// Copyright © 2017年 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double INF=1e9;
const double eps=1e-;
const double pi=acos(-);
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
void print(){printf("%lf %lf\n",x,y);}
};
typedef Vector Point; struct Line{
Point s,t;
double k,b;
Line(){}
Line(Point a,Point c):s(a),t(c){
k=(t.y-s.y)/(t.x-s.x);
b=s.y-k*s.x;
}
double f(double x){return k*x+b;}
}L[N];
int nl;
struct Circle{
double x,r;
Circle(){}
Circle(double x,double r):x(x),r(r){}
}C[N];
void addCommonTangent(Circle a,Circle b){
nl++;
double sina=(a.r-b.r)/(b.x-a.x);
double cosa=sqrt(-sina*sina);
double tana=sina/cosa;
L[nl].s=Point(a.x+a.r*sina,a.r*cosa);
L[nl].t=Point(b.x+b.r*sina,b.r*cosa);
L[nl].k=-tana;
L[nl].b=L[nl].s.y-L[nl].k*L[nl].s.x;
}
int n;
double alpha,h[N],lb=INF,rb;
inline double F(double x){
double re=;
for(int i=;i<=nl;i++) if(x>=L[i].s.x&&x<=L[i].t.x) re=max(re,L[i].f(x));
for(int i=;i<=n;i++) if(x>=C[i].x-C[i].r&&x<=C[i].x+C[i].r)
re=max(re,sqrt(C[i].r*C[i].r-(x-C[i].x)*(x-C[i].x)));
return re;
}
inline double cal(double l,double r){
return (F(l)+F(r)+*F((l+r)/))*(r-l)/;
}
double simpson(double l,double r,double now){
double mid=(l+r)/,p=cal(l,mid),q=cal(mid,r);
if(abs(now-p-q)<eps) return now;
else return simpson(l,mid,p)+simpson(mid,r,q);
} Point p;
int main(int argc, const char * argv[]){
scanf("%d%lf",&n,&alpha);
for(int i=;i<=n+;i++) scanf("%lf",&h[i]),h[i]+=h[i-];
for(int i=;i<=n;i++) scanf("%lf",&C[i].r);
double ta=tan(alpha);
p=Point(h[n+]/ta,);
rb=max(rb,p.x);
{
C[n].x=h[n]/ta;
double x=C[n].x,r=C[n].r;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(x+r<p.x){
double l=r*r/(p.x-x);//she ying ding li
double h=sqrt(r*r-l*l);
L[++nl]=Line(Point(x+l,h),p);
}
}
for(int i=n-;i>=;i--){
C[i].x=h[i]/ta;
double x=C[i].x,r=C[i].r;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(sgn(C[i+].x-C[i].x-abs(C[i+].r-C[i].r))>)//d-abs(R-r)<=0 nei han
addCommonTangent(C[i],C[i+]);
}
printf("%.2f\n",*simpson(lb,rb,cal(lb,rb)));
return ;
}

BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]的更多相关文章

  1. [BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】

    题目链接: BZOJ - 1502 题目分析 这是我做的第一道 Simpson 积分的题目.Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl ...

  2. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  3. 【bzoj 1502】月下柠檬树

    月下柠檬树 题意 求n个圆与他们的公切线的定积分. 解法 求出圆的公切线就可以了. 特别坑的一点 : 最两端的圆,有可能会被其他的圆所包含,所以要重新求一下最左端与最右端. 比较坑的一点 : 精度要设 ...

  4. 1502: [NOI2005]月下柠檬树 - BZOJ

    Description Input 文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度).第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的 ...

  5. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  6. 1502: [NOI2005]月下柠檬树

    一堆圆台平行光的投影 在草稿纸上画一下,发现对于一个圆,它投影完还是一个半径不变的圆. 定义树的轴在投影平面上经过的点为原点,定一个正方向,建立平面直角坐标系, 能发现,对于一个半径为\(r\),高度 ...

  7. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  8. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  9. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

随机推荐

  1. PHP安全之webshell和后门检测

    基于PHP的应用面临着各种各样的攻击: XSS:对PHP的Web应用而言,跨站脚本是一个易受攻击的点.攻击者可以利用它盗取用户信息.你可以配置Apache,或是写更安全的PHP代码(验证所有用户输入) ...

  2. ThinkPHP5+小程序商城 网盘视频

    ThinkPHP5+小程序商城   网盘视频  有需要联系我  QQ:1844912514

  3. h5学习笔记:vuethink 配置

    vuethink 是一款基于PHP TP5和Vuejs 结合的后台框架,设计起来是使用较为前沿.在使用的过程,需要对这款开源的后台做一些调整和面对一些细节的坑.前段时间也因为有项目需求,所以下载了玩了 ...

  4. HTML5 Audio/Video 标签,属性,方法,事件汇总 (转)

    标签属性:src:音乐的URLpreload:预加载autoplay:自动播放loop:循环播放controls:浏览器自带的控制条 1 http://www.abc.com/test.mp3&quo ...

  5. php数组根据某一个键值,把相同键值的合并生成一个新的二维数组

    http://blog.csdn.net/xyzchenxiaolin/article/details/51700485 源数据: $infos = array( array( 'a' => 3 ...

  6. Algorithms code

    一些值得回看的小算法. 最长的连续子数组 子数组数字不重复 int [] arr={1,2,3,4,7}; //输出4 int [] arr1={1,2,3,4,1,2,3,4,5,1}; //输出5 ...

  7. J.U.C CAS

    在JDK1.5之前,也就是J.U.C加入JDK之前,Java是依靠synchronized关键字(JVM底层提供)来维护协调对共享字段的访问,保证对这些变量的独占访问权,并且以后其他线程忽的该锁时,将 ...

  8. JAVA BASE64

    Base64编码说明:     Base64编码要求把3个8位字节(3*8=24)转化为4个6位的字节(4*6=24),之后在6位的前面补两个0,形成8位一个字节的形式. 如果剩下的字符不足3个字节, ...

  9. c指针作为参数传递以及指针的指针

    指针作为函数参数传递 函数参数传递的只能是数值,所以当指针作为函数参数传递时,传递的是指针的值,而不是地址. #include "stdio.h" void pointer(int ...

  10. C#如何释放已经加载的图片

    使用Image.FromFile取磁盘上的图片时,这个方法会锁定图片文件,而且会导致内存占用增大, 有几种方法解决:一:将Image类转换成Bitmap类System.Drawing.Image im ...