差分约束做法

又是一道转换成前缀和的差分约束题,已知从s月到t月的收入w,设数组pre[i]代表从开始到第i个月的总收入

构造差分不等式 $ pre[s-1]-pre[t]==w $

为了满足松弛操作,我们将不等式转化成 $ pre[s-1]-pre[t]>=w $

这样建图以后我们发现当且仅当图中出现正环或负环时,账本为假,

我们可以直接在建图时加入一条反向的权值相反的边,这样直接判断负环即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define RST(a) memset((a),0,sizeof((a)))
using namespace std;
int init(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return fh*rv;
}
int T,head[10005],nume,dis[10005];
bool f[10005];
struct edge{
int to,nxt,dis;
}e[10005];
void adde(int from,int to,int dis){
e[++nume].to=to;
e[nume].dis=dis;
e[nume].nxt=head[from];
head[from]=nume;
}
bool dfs_SPFA(int u){
f[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(dis[v]>dis[u]+e[i].dis){
dis[v]=dis[u]+e[i].dis;
if(f[v]) return 1;
if(dfs_SPFA(v)) return 1;
}
}
f[u]=0;
return 0;
}
int main(){
freopen("in.txt","r",stdin);
T=init();
while(T--){
RST(dis);RST(head);RST(e);nume=0;RST(f);
int n=init(),m=init();
for(int i=1;i<=m;i++){
int u=init(),v=init(),di=init();
adde(u-1,v,di);
adde(v,u-1,-di);
}
bool fff=0;
for(int i=0;i<=n;i++){
if(dfs_SPFA(i)) {fff=1;break;}
}
if(fff) printf("false\n");
else printf("true\n");
}
fclose(stdin);
return 0;
}

并查集做法

本题也可以维护一个带权并查集,

fa[i]表示i号元素的父亲节点,root[i]表示i所在并查集的代表元,dis[i]=pre[i]-pre[root[i]]。所以我们可以维护一个带权并查集。

并查集的两个关键操作,查询和合并

find:

带权并查集的一般写法,更新父节点时,一并更新dis[].

因为原来\(dis[x]=pre[x]-pre[fa[x]]\),更新后\(dis[fa[x]]=pre[fa[x]]-pre[root[x]]\),所以 \(dis[x]+=dis[fa[x]]\)就更新完成了。

merge

如果读入的两个点在同一个并查集中,判断dis[u-1]-dis[v]是否等于w,若不等于,则为假。

如果不在同一个并查集中,使\(fa[root[u-1]]=root[v]\).

注意,此处为了保证合并以后原有的数量关系不发生改变,要注意 dis[root[u-1]]更新的时候加上的数值,可以在本上画一下。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define RST(a) memset((a),0,sizeof((a)))
using namespace std;
int init(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return fh*rv;
}
int T,fa[10005],dis[10005];
int find(int x){
if(fa[x]!=x){
int t=find(fa[x]);
dis[x]+=dis[fa[x]];
fa[x]=t;
}
return fa[x];
}
int main(){
freopen("in.txt","r",stdin);
T=init();
while(T--){
bool fff=0;
RST(fa);RST(dis);
int n=init(),m=init();
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++){
int u=init(),v=init(),w=init();
int r1=find(u-1),r2=find(v);
if(r1==r2){
if(!fff&&dis[v]-dis[u-1]!=w) fff=1,printf("false\n");
}else{
fa[r1]=r2;
dis[r1]=dis[v]-dis[u-1]-w;
}
}
if(!fff) printf("true\n");
}
fclose(stdin);
return 0;
}

洛谷 [p2294] [HNOI2005] 狡猾的商人的更多相关文章

  1. 洛谷P2294 [HNOI2005]狡猾的商人

    P2294 [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要 ...

  2. Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)

    题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...

  3. 题解——洛谷P2294 [HNOI2005]狡猾的商人(差分约束)

    裸的差分约束 dfs判断负环,如果有负环就false,否则就是true 注意有多组数据,数组要清空 #include <cstdio> #include <algorithm> ...

  4. [luogu P2294] [HNOI2005]狡猾的商人

    [luogu P2294] [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据, ...

  5. P2294 [HNOI2005]狡猾的商人(差分约束)

    P2294 [HNOI2005]狡猾的商人 对于每个$(x,y,w)$,连边$(x-1,y,w),(y,x-1,-w)$,表示前$y$个月的收益比前$x-1$个月的收益大$w$ 这样题目就转化为询问图 ...

  6. LUOGU P2294 [HNOI2005]狡猾的商人(差分约束)

    [传送门] (https://www.luogu.org/problemnew/show/P2294) 解题思路 差分约束.先总结一下差分约束,差分约束就是解决一堆不等式混在一起,左边是差的形式,右边 ...

  7. P2294 [HNOI2005]狡猾的商人

    题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要你判断.每组数据的第一行为两个正整数n和m, ...

  8. [HNOI2005]狡猾的商人 ,神奇做法——贪心

    洛谷P2294 [HNOI2005]狡猾的商人 ,神奇做法--贪心 看到大牛都是写的差分约束或带权并查集,本蒟蒻都不太会(还是用差分约束过了的QAQ),但是想出一种贪心的策略,运用神奇的优先队列实现. ...

  9. [BZOJ1202][HNOI2005]狡猾的商人

    [BZOJ1202][HNOI2005]狡猾的商人 试题描述 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i= ...

随机推荐

  1. dijk

    .....................用矩阵存..................... 1 int mp[N][N]; bool p[N]; int dist[N]; void dijk(int ...

  2. JS 监听浏览器各个标签间的切换

    以前看到过一些网页,在标签切换到其它地址时,网页上的标题上会发生变化,一直不知道这个是怎么做的,最近查了一些资料才发现有一个 visibilitychange 事件就可以搞定,这里将介绍一下页面可见性 ...

  3. 教你如何解决Sublime Text 3使用中出现的中文乱码问题

    Sublime Text 3 是一个非常不错的源代码及文本编辑器,但是不支持GB2312和GBK编码在很多情况下会非常麻烦. 不过Sublime Package Control所提供的插件可以让Sub ...

  4. YUI 和路径相关的参数与module加载之间的关系

    相关参数默认值 使用YUI, 我们可以配置一些和路径相关参数,如base.root.comboBase.cdn, combine.path.fullpath等属性的配置均会影响到YUI的module加 ...

  5. Oracle_字段数据类型

    Oracle_字段数据类型 数据库表字段的数据类型 字符数据类型 CHAR:存储固定长度的字符串 VARCHAR2 :存储可变长度的字符串 数值数据类型 NUMBER:存储整数和浮点数,格式为NUMB ...

  6. mybatis_helloworld(2)_源码

    摘录自:http://blog.csdn.net/y172158950/article/details/16982123 在helloworld(1)中,分析了insert一条数据的流程,现在分析下源 ...

  7. python装饰器实现对异常代码出现进行监控

    异常,不应该存在,但是我们有时候会遇到这样的情况,比如我们监控服务器的时候,每一秒去采集一次信息,那么有一秒没有采集到我们想要的信息,但是下一秒采集到了, 而后每次的采集都能采集到,就那么一次采集不到 ...

  8. 04 整合IDEA+Maven+SSM框架的高并发的商品秒杀项目之高并发优化

    Github:https://github.com/nnngu 项目源代码:https://github.com/nnngu/nguSeckill 关于并发 并发性上不去是因为当多个线程同时访问一行数 ...

  9. python下划线作用初识

    单下划线(例:_textchar) 以单下划线做前缀的名称指定了这个名称是"私有的".在 有些 导入import * 的场景中,下一个使用你代码的人(或者你本人)会明白这个名称仅内 ...

  10. java常用类--字符串

    String import java.io.IOException; import java.util.Arrays; public class Linkin { public static void ...