深度优先搜索DFS和广度优先搜索BFS简单解析

与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历。图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图均适用。

一.深度优先搜索

1.理解分析

首先,让我们来看一看更些简单的深度优先搜索DFS。顾名思义,这个搜索方法是以深度优先,也就是先一条路走到黑,撞到南墙再回头。我们可以看做是一棵树,优先走到根部,然后换一根继续走到最后。下面给出一张图便于理解。

我们可以看到,我们先从V1出发前往V2,然后继续往更深的地方出发,前往V5,V9,然后由于V9是根的最深处,于是我们返回上一层(V5所在),发现还有一个V10没有搜索,所以我们前往V10,然后由于V10是最深的地方,接着往回上一层(V5所在),看看是否还有没有访问搜索的点,发现没有,接着返回上一层(V2所在),发现还有一个V6没有访问,于是搜索访问V6。如此重复,这样就是深度优先搜索。

我们来仔细思考下这个过程,有没有发现和递归有着类似之处?

我们来看一看,第一次调用,我们可以理解为目前处于第二层搜索V2节点,第二次调用,我们可以理解为DFS里搜索该节点下的第三层节点,调用完成后结束调用可以看做返回第一层,这样,其中一条V2及以下都已经被遍历过,重复过程,改变参数,我们可以使得所有都被遍历过一次。所以,我们一般采用递归的方法来实现DFS。

2.例题分析

https://vjudge.net/problem/HDU-1241

油田问题可以说是经典的使用DFS解决的问题了。

Input:

Output:

2

输入的第一行是油田行数和列数,@符号代表油田,我们要求的是的 @ 符号连成一块地(横竖斜相连都算),能有几块这样的油田地。

下面给出代码:

#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int map[150][150];//用来记录该地是否被查询过,0代表没有
int x, y;
char p[150][150];//存放油田
int find(int a, int m, int n)
{
if (map[m][n] != 0|| p[m][n] != '@')//当不是油田(也就是搜索到头了),并且被找过了,则返回0
return 0;
else
{
map[m][n] = a;
//下面这些就是递归部分,写成这样分开便于理解
//先一直往横坐标加1,往右侧不断查询,以下同理
find(a, m + 1, n);
find(a, m + 1, n + 1);
find(a, m + 1, n - 1);
find(a, m, n + 1);
find(a, m, n - 1);
find(a, m - 1, n + 1);
find(a, m - 1, n);
find(a, m - 1, n - 1);
}
return 0;
}
int oilPocket(int a)
{
int i, j;
for (i = 0; i < x; i++)
{
for (j = 0; j < y; j++)
{
if (map[i][j] == 0 && p[i][j] == '@')
{ //当遇到一块油田没有被遍历过,则以这个点进行深度优先搜索
find(a, i, j);//a代表这块大油田地是第几块,ij就是坐标
a++;
}
}
}
return a;
}
int main()
{
int ans;
while (scanf("%d %d", &x, &y) != EOF)
{
if (x == 0 || y == 0) break;
memset(p, '*', sizeof(p));
for (int i = 0; i < x; i++)
{
cin.get();//存回车
for (int j = 0; j < y; j++)
{
scanf("%c", &p[i][j]);
}
}
memset(map, 0, sizeof(map));
ans = oilPocket(1) - 1;
printf("%d\n", ans);
}
return 0;
}

这段代码主要是find函数部分,我们可以看到,每次递归都是一开始往右侧找,找到头后往下找,每次都是有着固定的方向,一路寻找到头,然后才会改变方向。这样,我们就使用DFS成功地求得连接在一起的油田数量。

  • 有一点在写深度优先搜索时容易犯错误,那就是注意要判断该点是否查询过,反复查询会导致无限递归从而程序出现错误。

二.广度优先搜索

1.理解分析

和深度优先搜索不同的是,我们先访问的是同一层未被搜索过的点,当该层搜索完毕后,我们才会往下一层进发,开始下一层的搜索。

由图我们可以看到我们从V1开始,选择搜索V2,接下来并没有同深度优先搜索一样,搜索V5,而是接着看看同层是否有未被搜索过的点,我们发现V3没有被搜索过,所以我们接着搜索V3,知道V3,V4都被搜索过,我们才开始往下一层进发,搜索V5,V6......

接着,我们来仔细想想,我们该怎么实现BFS呢?

我们发现,如果我们把同一层的点存起来,那么,先进先出的话,同层点在被访问过后,才会接着访问下一层的点。而先进先出正是队列的特点,所以,我们可以使用队列来实现BFS。

2.例题分析

https://vjudge.net/problem/HDU-1548

奇怪的电梯,可以使用BFS来解决,当然也可以使用DFS和Dijkstra

来解决(有兴趣可以尝试下)

奇怪的电梯题目输入是当前所在楼层,目的楼层,楼层总数,每层电梯只能上下的层数。

输出是最少的次数,不能到达则-1。

#include <queue>
#include <iostream>
#include <cstring>
using namespace std;
queue <int> q;
int num,s,e;
int a[1000];
int step[1000];
void bfs(){
int m,n;
while(!q.empty())
{
m = q.front();//取出当前队列第一个数,即当前楼层
q.pop();
n = m + a[m];//往上移动到的楼层数
if(n >= 1 && n <= num && step[n] == -1)
{
step[n] = step[m] + 1;//步数自增
q.push(n);//把当前(移动后的)楼层数加入队列
}
n = m - a[m];//往下移动到的楼层数
if(n >= 1 && n <= num && step[n] == -1)
{
step[n] = step[m] + 1;//步数自增
q.push(n);//把当前(移动后的)楼层数加入队列
}
}
//队列为空,则表示没有可以移动的位置了,即所有能走的楼层均走过
cout << step[e] << endl;
} int main(){
while(scanf("%d",&num)!= EOF)
{
if(num == 0)
{
break;
}
scanf("%d%d",&s,&e);//开始结束楼层
for(int i = 1 ; i <= num ; i++)
{
scanf("%d",&a[i]);//每层固定上下移动的层数
}
memset(step,-1,sizeof(step));
step[s] = 0;
q.push(s);//将开始层数加入队列
bfs();
}
return 0;
}

BFS对于求无权路的最短路径很方便,遍历一遍,到了对应的节点,则可以说是最短路径,对于有权图可以采用Dijkstra等等。

三.总结

BFS和DFS主要是一种遍历图的方式,理解透彻具体是什么,该怎么遍历,熟练之后便可以很快上手,那么该怎么熟练呢?当然是理解+刷题(笑。再来推荐道题目Serial Time! ,DFS,BFS都可以尝试下(逃

深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)的更多相关文章

  1. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  2. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  3. 深度优先搜索DFS和广度优先搜索BFS

    DFS简介 深度优先搜索,一般会设置一个数组visited记录每个顶点的访问状态,初始状态图中所有顶点均未被访问,从某个未被访问过的顶点开始按照某个原则一直往深处访问,访问的过程中随时更新数组visi ...

  4. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

  5. 图的 储存 深度优先(DFS)广度优先(BFS)遍历

    图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...

  6. 图的深度优先遍历(DFS)和广度优先遍历(BFS)

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  7. 【C++】基于邻接矩阵的图的深度优先遍历(DFS)和广度优先遍历(BFS)

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  8. 图的深度优先遍历(DFS)和广度优先遍历(BFS)算法分析

    1. 深度优先遍历 深度优先遍历(Depth First Search)的主要思想是: 1.首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点: 2.当没有未访问过的顶点时,则回 ...

  9. 深度优先搜索(DFS)和广度优先搜索(BFS)求解迷宫问题

    用下面这个简单的迷宫图作为例子: OXXXXXXX OOOOOXXX XOXXOOOX XOXXOXXO XOXXXXXX XOXXOOOX XOOOOXOO XXXXXXXO O为通路,X为障碍物. ...

随机推荐

  1. CentOS下mysql数据库data目录迁移和配置优化

    目录迁移 关闭数据库服务 service mysqld stop 复制数据库 mv /var/lib/mysql /data/mysql # 或者使用cp -a复制 # 这两个命令都会带权限到新目录去 ...

  2. MySQL死锁[转]

    案例描述       在定时脚本运行过程中,发现当备份表格的sql语句与删除该表部分数据的sql语句同时运行时,mysql会检测出死锁,并打印出日志. 两个sql语句如下:       (1)inse ...

  3. HDU [P1704] Rank

    传递闭包裸题 但是本题的Floyd一定要优化,不然会T cpp #include <iostream> #include <cstdio> #include <cstri ...

  4. 洛谷 [P1402] 酒店之王

    有两个约束条件的二分图匹配 我们回忆一下二分图匹配的匈牙利算法的具体流程,它是通过寻找增广路来判断最大匹配数的,我们再观察一下题目中的两个条件,只有两个条件都满足,才算找到一条增广路,所以我们可以分别 ...

  5. BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]

    传送门 题意: 给一张无向图和一棵生成树,改变一些边的权值使生成树为最小生成树,代价为改变权值和的绝对值,求最小代价 线性规划的形式: $Min\quad \sum\limits_{i=1}^{m} ...

  6. CF 2015 ICL, Finals, Div. 1 J. Ceizenpok’s formula [Lucas定理]

    http://codeforces.com/gym/100633/problem/J Lucas定理P不是质数裸题 #include <iostream> #include <cst ...

  7. win7下MySQL的安装配置及卸载 笔记分享

    一.官网下载地址:https://dev.mysql.com/downloads/mysql/ 1.选择对应版本,下载免安装版: 2.不要注册账号,点击"No thanks,just sta ...

  8. Apollo学习

    Apollo的配置 参考: Apollo 配置详细步骤(Windows环境) MQTT再学习 -- 搭建MQTT服务器及测试 分布式部署指南 Java客户端使用指南

  9. nginx的负载均衡集群测试

    分别在3台机子安装nginx和启动nginx服务. dir: 192.168.0.7 另外2台服务器为 192.168.0.5 ,192.168.0.6 在dir  192.168.0.7 上增加配置 ...

  10. 【基础】26个命令玩转linux,菜鸟及面试必备

    1 查看目录与文件:ls #显示当前目录下所有文件的详细信息 ls -la 2 切换目录:cd #切换当前目录为/opt/test cd /opt/test 3 显示当前目录:pwd pwd 4 创建 ...