Adding New Machine

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1428    Accepted Submission(s): 298

Problem Description
Incredible Crazily Progressing Company (ICPC) suffered a lot with the low speed of procedure. After investigation, they found that the bottleneck was at Absolutely Crowded Manufactory (ACM). In oder to accelerate the procedure, they bought a new machine for
ACM. But a new problem comes, how to place the new machine into ACM?

ACM is a rectangular factor and can be divided into W * H cells. There are N retangular old machines in ACM and the new machine can not occupy any cell where there is old machines. The new machine needs M consecutive cells. Consecutive cells means some adjacent
cells in a line. You are asked to calculate the number of ways to choose the place for the new machine. 

 
Input
There are multiple test cases (no more than 50). The first line of each test case contains 4 integers W, H, N, M (1 ≤ W, H ≤ 107, 0 ≤ N ≤ 50000, 1 ≤ M ≤ 1000), indicating the width and the length of the room, the number of old machines and the size
of the new machine. Then N lines follow, each of which contains 4 integers Xi1, Yi1, Xi2 and Yi2 (1 ≤ Xi1 ≤ Xi2 ≤ W, 1 ≤ Yi1 ≤ Yi2 ≤ H), indicating the coordinates of the
i-th old machine. It is guarantees that no cell is occupied by two old machines. 
 
Output
Output the number of ways to choose the cells to place the new machine in one line. 
 
Sample Input
3 3 1 2
2 2 2 2
3 3 1 3
2 2 2 2
2 3 2 2
1 1 1 1
2 3 2 3

 Sample Output

8
4
3
/*
hdu 4052 线段树扫描线、奇特处理 给你W*H大小的矩形,其中有N个地区不能使用(给出了这个地区的两个顶点的坐标即(x1,y1)
和(x2,y2)),问能下多少个1*M的矩形。 但是看见题目有想到了扫描线,但是一直不知道应该怎么处理后来偶然看见别人提示可以转换
成求面积,大致就有了思路 假设1*n的矩阵中放入1*m的矩阵,能有多少种? n-m+1
我们扫描每一列,两个相邻为n的旧机器中就能放下n-m+1个新机器,于是原先的旧机器矩形
就变成了(x1,y1,x2+ma-1,y2)(从下往上扫描)
(x1,y1,x2,y2+ma-1)(从左往右扫描)
而剩下的为被占据的位置就是方案数了
因为我是在每个旧机器往右边添加的,所以还要解决这一列没有从1开始的情况,所以在最左边
加上(1,1,ma,h+1)的矩阵
而且ma=1时,横着放和竖着放是一样的,所以除以2 但是第一个版本写出来一直 RuntimeError
后来实在没法又换了个,把离散化用vec处理终于出现了WR(TAT)
主要是 ma == 1 情况,因为我会在1添加一个矩阵,但是当ma==1时这个矩阵也被建立了就导致
(1,1,1,h+1) 由于是按边建树l=x1,r=x2-1 -> r<l (- -!好气) //应该多测几次的 然后进行了特判第一个也过了 hhh-2016-03-30 22:26:25
*/ //Second
#include <iostream>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <functional>
#include <map>
#include <algorithm>
#include <queue>
#include <vector>
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std; const int maxn = 1000005;
vector<int> vec;
int w,h;
int x[maxn],y[maxn],tx[maxn],ty[maxn];
map<int,int > mp;
int n,ma;
struct node
{
int l,r;
int sum;
ll len;
int mid()
{
return (l+r)>>1;
}
} tree[maxn<<2]; void push_up(int i)
{
if(tree[i].sum)
tree[i].len = vec[tree[i].r+1]-vec[tree[i].l];
else if(tree[i].l == tree[i].r)
tree[i].len = 0;
else
tree[i].len = tree[lson].len+tree[rson].len;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].sum = tree[i].len = 0;
if(l == r)
return;
build(lson,l,tree[i].mid());
build(rson,tree[i].mid()+1,r);
push_up(i);
} void push_down(int i)
{ } void Insert(int i,int l,int r,int val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
tree[i].sum += val;
push_up(i);
return ;
}
int mid = tree[i].mid();
push_down(i);
if(l <= mid)
Insert(lson,l,r,val);
if(r > mid)
Insert(rson,l,r,val);
push_up(i);
return ;
} struct edge
{
int l,r;
int high;
int va;
};
edge Line[maxn<<2];
int m;
bool cmp(edge a,edge b)
{
if(a.high != b.high)
return a.high < b.high;
else
return a.va > b.va;
} int tox;
ll ans;
void solve(int cur,int hi,int wi)
{
vec.clear();
if(cur)
{
for(int i =1; i <= n; i++)
swap(x[i],y[i]),swap(tx[i],ty[i]);
}
tox = 0;
for(int i = 1; i <= n; i++)
{
int t = min(wi+1,tx[i]+ma-1);
Line[tox].l = x[i],Line[tox].r =t,Line[tox].high = y[i],Line[tox++].va = 1;
Line[tox].l = x[i],Line[tox].r =t,Line[tox].high = ty[i],Line[tox++].va = -1;
vec.push_back(x[i]);
vec.push_back(t);
}
if(ma != 1)
{
Line[tox].l = 1,Line[tox].r = ma,Line[tox].high=1,Line[tox++].va=1;
Line[tox].l = 1,Line[tox].r = ma,Line[tox].high=hi+1,Line[tox++].va=-1;
vec.push_back(1),vec.push_back(ma);
}
sort(Line,Line+tox,cmp);
sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end());
int m = vec.size();
for(int i = 0; i < m; i++)
mp[vec[i]] = i;
build(1,0,m);
int l,r;
for(int i = 0; i < tox-1; i++)
{
l = mp[Line[i].l];
r = mp[Line[i].r]-1;
if(r < l)
continue;
Insert(1,l,r,Line[i].va);
ans -= (ll)tree[1].len*(Line[i+1].high-Line[i].high);
}
//cout << tans <<endl;
} int main()
{
while(scanf("%d%d%d%d",&w,&h,&n,&ma) != EOF)
{
for(int i = 1; i <= n; i++)
{
scanf("%d%d%d%d",&x[i],&y[i],&tx[i],&ty[i]);
tx[i]++,ty[i]++;
} ans =(ll)w*h*2;
solve(0,h,w);
solve(1,w,h);
if(ma == 1)
ans /= 2;
printf("%I64d\n",ans);
}
return 0;
} /*
First: #include <iostream>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <functional>
#include <map>
#include <algorithm>
#include <queue> #define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std; const int maxn = 1000005; ll w,h;
int n,ma;
int now;
struct node
{
int l,r;
int sum;
ll len;
int mid()
{
return (l+r)>>1;
}
} tree[maxn<<2];
ll hs[2][maxn]; void push_up(int i)
{
if(tree[i].sum)
tree[i].len = hs[now][tree[i].r+1]-hs[now][tree[i].l];
else if(tree[i].l == tree[i].r)
tree[i].len = 0;
else
tree[i].len = tree[lson].len+tree[rson].len;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].sum = tree[i].len = 0;
if(l == r)
return;
build(lson,l,tree[i].mid());
build(rson,tree[i].mid()+1,r);
push_up(i);
} void push_down(int i)
{ } void Insert(int i,int l,int r,int val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
tree[i].sum += val;
push_up(i);
return ;
}
int mid = tree[i].mid();
push_down(i);
if(l <= mid)
Insert(lson,l,r,val);
if(r > mid)
Insert(rson,l,r,val);
push_up(i);
return ;
} struct edge
{
ll l,r;
ll high;
int va;
};
edge tx[maxn<<2];
edge ty[maxn<<2];
int m;
bool cmp(edge a,edge b)
{
if(a.high != b.high)
return a.high < b.high;
else
return a.va > b.va;
}
int bin(int cur,ll x)
{
int l = 0,r = m-1;
while(l <= r)
{
int mid = (l+r)>>1;
if(hs[cur][mid] == x)
return mid;
else if(hs[cur][mid] < x)
l = mid+1;
else
r = mid-1;
}
}
int tox,toy;
ll solve(int cur)
{
now = cur;
int len = (cur == 0 ? tox:toy);
m = 1;
for(int i = 1; i < len; i++) //ШЅжи
{
if(hs[cur][i] != hs[cur][i-1])
hs[cur][m++] = hs[cur][i];
}
// for(int i = 0;i < m;i++)
// printf("%d ",hs[cur][i]);
// cout <<endl;
build(1,0,m);
ll tans = 0;
int l,r;
for(int i = 0; i < len-1; i++)
{
if(cur == 0)
{
l = bin(cur,tx[i].l);
r = bin(cur,tx[i].r)-1;
Insert(1,l,r,tx[i].va);
tans += (ll)tree[1].len*(tx[i+1].high-tx[i].high);
}
else
{
l = bin(cur,ty[i].l);
r = bin(cur,ty[i].r)-1;
if(r < l )continue;
Insert(1,l,r,ty[i].va);
tans += (ll)tree[1].len*(ty[i+1].high-ty[i].high);
} //cout << tree[i].len << endl;
//cout << tans <<endl; }
//cout << tans <<endl;
return tans;
} int main()
{
while(scanf("%I64d%I64d%d%d",&w,&h,&n,&ma) != EOF)
{
tox = 0,toy = 0;
ll x1,y1,x2,y2;
for(int i = 1; i <= n; i++)
{
scanf("%I64d%I64d%I64d%I64d",&x1,&y1,&x2,&y2);
x2++,y2++;
ll t1 = (x2+ma-1)>w+1? w+1:x2+ma-1;
tx[tox].l = x1,tx[tox].r = t1,tx[tox].high = y1,tx[tox].va = 1;
hs[0][tox++] = x1;
tx[tox].l = x1,tx[tox].r = t1,tx[tox].high = y2,tx[tox].va = -1;
hs[0][tox++] = t1; t1 = (y2+ma-1)>h+1? h+1:y2+ma-1;
ty[toy].l = y1,ty[toy].r = t1,ty[toy].high = x1,ty[toy].va = 1;
hs[1][toy++] = y1;
ty[toy].l = y1,ty[toy].r = t1,ty[toy].high = x2,ty[toy].va = -1;
hs[1][toy++] = t1;
}
if(ma != 1){
tx[tox].l = 1,tx[tox].r = ma,ty[toy].l=1,ty[toy].r = ma;
tx[tox].high=1,tx[tox].va=1,ty[toy].high=1,ty[toy].va=1;
hs[0][tox++] = 1,hs[1][toy++]=1; tx[tox].l = 1,tx[tox].r = ma,ty[toy].l=1,ty[toy].r = ma;
tx[tox].high=h+1,tx[tox].va=-1,ty[toy].high=w+1,ty[toy].va=-1;
hs[0][tox++] = ma,hs[1][toy++] = ma;
}
sort(hs[0],hs[0]+tox);
sort(hs[1],hs[1]+toy);
sort(tx,tx+tox,cmp);
sort(ty,ty+toy,cmp);
ll ans = w*h*2; ans -= solve(0);
//printf("%I64d\n",ans);
ans -= solve(1);
if(ma == 1)
ans /= 2;
printf("%I64d\n",ans);
}
return 0;
} */

  

												

hdu 4052 线段树扫描线、奇特处理的更多相关文章

  1. hdu 1828 线段树扫描线(周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  2. hdu 5091(线段树+扫描线)

    上海邀请赛的一道题目,看比赛时很多队伍水过去了,当时还想了好久却没有发现这题有什么水题的性质,原来是道成题. 最近学习了下线段树扫描线才发现确实是挺水的一道题. hdu5091 #include &l ...

  3. HDU 5107 线段树扫描线

    给出N个点(x,y).每一个点有一个高度h 给出M次询问.问在(x,y)范围内第k小的高度是多少,没有输出-1 (k<=10) 线段树扫描线 首先离散化Y坐标,以Y坐标建立线段树 对全部的点和询 ...

  4. hdu 1255(线段树 扫描线) 覆盖的面积

    http://acm.hdu.edu.cn/showproblem.php?pid=1255 典型线段树辅助扫描线,顾名思义扫描线就是相当于yy出一条直线从左到右(也可以从上到下)扫描过去,此时先将所 ...

  5. HDU 5091 线段树扫描线

    给出N个点.和一个w*h的矩形 给出N个点的坐标,求该矩形最多能够覆盖多少个点 对每一个点point(x.y)右边生成相应的点(x+w,y)值为-1: 纵向建立线段树,从左到右扫描线扫一遍.遇到点则用 ...

  6. hdu 1542 线段树+扫描线 学习

    学习扫描线ing... 玄学的东西... 扫描线其实就是用一条假想的线去扫描一堆矩形,借以求出他们的面积或周长(这一篇是面积,下一篇是周长) 扫描线求面积的主要思想就是对一个二维的矩形的某一维上建立一 ...

  7. hdu 4419 线段树 扫描线 离散化 矩形面积

    //离散化 + 扫描线 + 线段树 //这个线段树跟平常不太一样的地方在于记录了区间两个信息,len[i]表示颜色为i的被覆盖的长度为len[i], num[i]表示颜色i 『完全』覆盖了该区间几层. ...

  8. hdu 3265 线段树扫描线(拆分矩形)

    题意:        给你n个矩形,每个矩形上都有一个矩形的空洞,所有的矩形都是平行于x,y轴的,最后问所有矩形的覆盖面积是多少. 思路:       是典型的矩形覆盖问题,只不过每个矩形上多了一个矩 ...

  9. HDU 1828 线段树+扫描线(计算矩形周长并)

    题意:给你n个矩形,然后矩形有可能重叠,要你求周长 思路:首先碰到这种矩形在数轴上那么第一反应应该想到的是扫描线, 做周长我们有两种方法 第一种,我们可以分开两部分求,第一遍求x轴上的贡献,第二遍求y ...

随机推荐

  1. 关于使用栈将一般运算式翻译为后缀表达式并实现三级运算的方法及实例(cpp版)

    #include <iostream> #include <stack> #include <vector> #include <string> #de ...

  2. 构建微服务开发环境7————使用Github管理项目代码的版本

    [内容指引] 1.注册GitHub帐号: 2.下载Github Desktop客户端: 3.macOS安装Github Desktop客户端: 4.windows安装Github Desktop客户端 ...

  3. SpringCloud的Hystrix(一) 一个消费者内的两个服务监控

    一.概念与定义 1.服务雪崩 在微服务架构中,整个系统按业务拆分出一个个服务,这些服务之间可以相互调用(RPC),为了保证服务的高可用,单个服务通常会集群部署. 但是由于网络原因或自身原因,服务并不能 ...

  4. OAuth2.0学习(1-3)OAuth2.0的参与者和流程

    OAuth(开放授权)是一个开放标准.允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息.而这种授权无需将用户提供用户名和密码提供给该第三方网站. OAuth允许用户提供一个令牌给第 ...

  5. mysql中的函数与存储过程

    mysql中的函数:1 mysql下创建函数: 1.1 语法: delimiter $$ -- 设置分隔符,默认是; 设置成其他符号,让编译器知道我们函数编写的结束,此处设置成$$ create fu ...

  6. hdu 1880 魔咒字典

    https://vjudge.net/problem/HDU-1880 题意:略 思路: 一开始就是想到了正确的思路,但是代码写炸了,死活过不了.这题嘛,就是建议一个魔咒与咒语的双向映射.首先用字符串 ...

  7. TreeMap就这么简单【源码剖析】

    前言 声明,本文用得是jdk1.8 前面章节回顾: Collection总览 List集合就这么简单[源码剖析] Map集合.散列表.红黑树介绍 HashMap就是这么简单[源码剖析] LinkedH ...

  8. uva 1411 Ants

    题意: 一个平面上有n个黑色的点,n个白色的点,要求黑色的点与白色点之间一一配对,且线段之间不相交. 思路: 线段不相交并不好处理,想了很久想不出,所以看了蓝书的讲解. 一个很明显的结论是,不相交的线 ...

  9. html标记语言 --格式标记

    html标记语言 --格式标记 一.格式标记 1.<br>单标记,强制换行标记,让后面的文字.图片.表格等显示在下一行 2.<p>换段落标记 3.<center>居 ...

  10. requests-证书验证

    import requests #response = requests.get('https://www.12306.cn') #print(response.status_code) #以上会显示 ...