题目描述

给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来 了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,ai+1也被占据了的话就尝试ai+2,……,如果一直尝试到第n个都不行,该安排方案就不合 法。然而有m个人的编号已经确定(他们或许贿赂了你的上司...),你只能安排剩下的人的编号,求有多少种合法的安排方案。由于答案可能很大,只需输出其 除以M后的余数即可。

输入输出格式

输入格式:

第一行一个整数T,表示数据组数

对于每组数据,第一行有三个整数,分别表示n、m、M

若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi

输出格式:

对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO

输入输出样例

输入样例#1:

2
4 3 10
1 2 2 1 3 1
10 3 8882
7 9 2 9 5 10
输出样例#1:

YES 4
NO

说明

100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n 且保证pi互不相同。

首先,每个人都要有位置

那么意味着位置不能有空

也就是说,对于位置i,位置在i及i前面的人要大于i个,否则就填不满

每个i都符合条件则为合法

我们设sum[i]为可以填在1~i的人数

cnt[i]为必须填i的人数

显然sum可以通过cnt算出,具体方法:

sum[0]=n-m,sum[i]=sum[i-1]+cnt[i]

原因sum[i]肯定有∑cnt[1~i]然后算上不确定的n-m个人

这样就可以用sum[i]<i判断无解

求方案数用dp

令f[i][j]表示前i位,放j个人

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll f[][],cnt[],sum[],C[][],Mod,n,m;
int main()
{int T,i,j,p,q,flag,k;
cin>>T;
while (T--)
{
cin>>n>>m>>Mod;
memset(C,,sizeof(C));
memset(cnt,,sizeof(cnt));
memset(f,,sizeof(f));
C[][]=;
for (i=;i<=;i++)
{C[i][]=;
for (j=;j<=i;j++)
C[i][j]=C[i-][j]+C[i-][j-],C[i][j]%=Mod;
}
for (i=;i<=m;i++)
{
scanf("%d%d",&p,&q);
cnt[q]++;
}
sum[]=n-m;flag=;
for (i=;i<=n;i++)
{
sum[i]=sum[i-]+cnt[i];
if (sum[i]<i)
{
cout<<"NO\n";
flag=;break;
}
}
if (flag)
{
f[][]=;
for (i=;i<=n;i++)
{
for (j=i;j<=sum[i];j++)
{
for (k=cnt[i];k<=j-i+;k++)
{
f[i][j]+=f[i-][j-k]*C[sum[i-]-(j-k)][k-cnt[i]]%Mod;
f[i][j]%=Mod;
}
}
}
cout<<"YES "<<f[n][n]<<endl;
}
}
}

[HAOI2011]Problem c的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  3. HAOI2011 problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1047  Solved: 434[Submit][ ...

  4. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  5. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  6. 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4164  Solved: 1888[Submit] ...

  7. BZOJ 2302: [HAOI2011]Problem c( dp )

    dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...

  8. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

  9. 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6015  Solved: 2741[Submit] ...

  10. BZOJ_2298_[HAOI2011]problem a_线段树

    BZOJ_2298_[HAOI2011]problem a_线段树 Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话( ...

随机推荐

  1. React Native 轻松集成统计功能(iOS 篇)

    最近产品让我加上数据统计功能,刚好极光官方支持数据统计 支持了 React Native 版本 第一步 安装: 在你的项目路径下执行命令: npm install janalytics-react-n ...

  2. java冒泡排序和快速排序

    本ID技术干货公众号"java工会",欢迎关注指正. 一.冒泡排序 1.算法介绍 设排序表长为n,从后向前或者从前向后两两比较相邻元素的值,如果两者的相对次序不对(A[i-1] & ...

  3. 福州大学W班-Beta冲刺评分

    作业链接 https://edu.cnblogs.com/campus/fzu/FZUSoftwareEngineering1715W/homework/1428 作业要求 1.博客具体要求 昨天的困 ...

  4. Alpha冲刺——Day2

    一.合照 二.项目燃尽图 三.项目进展 图形界面基本完成 接口文档框架完成,接下来将会不断细化填充 登录界面向服务器请求数据进行ing 四.明日规划 1.注册登录接口能够完成 2.研究idea实现获得 ...

  5. 20155303 2016-2017-2 《Java程序设计》第二周学习总结

    20155303 2016-2017-2 <Java程序设计>第二周学习总结 教材学习内容总结 『注意』 "//"为单行批注符: "/*"与&quo ...

  6. XML使用练习

    #!/usr/bin/env python # -*- coding:utf-8 -*- import requests from xml.etree import ElementTree as ET ...

  7. Microsoft dynamic 批量更新

    //批量处理 ExecuteMultipleRequest multipleRequest = new ExecuteMultipleRequest() { Settings = new Execut ...

  8. Web Api 过滤器之 AuthorizationFilter 验证过滤器

    该过滤器是最先执行的过滤器,即使把它放在最后 API [MyActionFilter] [MyExceptionFilter] [MyAuthorize] public void Get() { Tr ...

  9. tensorflow安装篇

    安装虚拟机redhat7u4-64 镜像文件在http://www.linuxfly.org/post/659 更换yum 参考https://blog.csdn.net/xiaoyiaoyou/ar ...

  10. 新概念英语(1-45)The boss's letter

    新概念英语(1-45)The boss's letter Why can't Pamela type the letter? A:Can you come here a minute, please, ...