Description

Solution

PJDP毁青春

注意到性质:到根的道路不超过 \(40\) 条

所以我们只关系一个点上面的道路的情况就行了

设 \(f[x][i][j]\) 表示一个点 \(x\) ,上面有 \(i\) 条公路没修,\(j\) 条铁路没修的最小代价

\(f[x][i][j]=min(f[ls][i+1][j]+f[rs][i][j],f[ls][i][j]+f[rs][i][j+1])\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=40010;
int n,ls[N],rs[N],b[N][2];
ll A[N],B[N],C[N],f[20010][45][45];
int xl[N],yl[N],tn;
inline void DFS(int x,int X,int Y){
xl[x]=X;yl[x]=Y;
if(x>=n)return ;
DFS(ls[x],X+1,Y);
DFS(rs[x],X,Y+1);
}
inline ll F(int x,int i,int j){
if(x<n)return f[x][i][j];
return C[x]*(A[x]+i)*(B[x]+j);
}
inline void dfs(int x){
if(x>=n)return ;
dfs(ls[x]);dfs(rs[x]);
for(int i=0;i<=xl[x];i++)
for(int j=0;j<=yl[x];j++)
f[x][i][j]=min(F(ls[x],i+1,j)+F(rs[x],i,j),F(ls[x],i,j)+F(rs[x],i,j+1));
}
int main(){
scanf("%d",&n);tn=n+n-1;
for(int i=1;i<n;i++){
scanf("%d%d",&b[i][0],&b[i][1]);
if(b[i][0]<0)b[i][0]=-b[i][0]+n-1;
if(b[i][1]<0)b[i][1]=-b[i][1]+n-1;
ls[i]=b[i][0];rs[i]=b[i][1];
}
for(int i=1;i<=n;i++)cin>>A[i+n-1]>>B[i+n-1]>>C[i+n-1];
DFS(1,0,0);
memset(f,127/3,sizeof(f));
dfs(1);
cout<<f[1][0][0]<<endl;
return 0;
}

bzoj 5290: [Hnoi2018]道路的更多相关文章

  1. 5290: [Hnoi2018]道路

    5290: [Hnoi2018]道路 链接 分析: 注意题目中说每个城市翻新一条连向它的公路或者铁路,所以两种情况分别转移一下即可. 注意压一下空间,最后的叶子节点不要要访问,空间少了一半. 代码: ...

  2. 【BZOJ5290】 [Hnoi2018]道路

    BZOJ5290 [Hnoi2018]道路 前言 这道题目我竟然没有在去年省选切? 我太菜了. Solution 对题面进行一个语文透彻解析,发现这是一个二叉树,乡村都是叶子节点,城市都有两个儿子.( ...

  3. [HNOI2018]道路 --- 树形DP

    [HNOI2018]道路 题目描述: W 国的交通呈一棵树的形状.W 国一共有 \(n-1\) 个城市和 \(n\) 个乡村, 其中城市从 \(1\) 到 \(n-1\) 编号,乡村从 \(1\) 到 ...

  4. BZOJ.5290.[AHOI/HNOI2018]道路(树形DP)

    BZOJ LOJ 洛谷 老年退役选手,都写不出普及提高DP= = 在儿子那统计贡献,不是在父亲那统计啊!!!(这样的话不写这个提高DP写记忆化都能过= =) 然后就令\(f[x][a][b]\)表示在 ...

  5. 【BZOJ5290】[HNOI2018]道路(动态规划)

    [BZOJ5290][HNOI2018]道路(动态规划) 题面 BZOJ 洛谷 题目直接到洛谷上看吧 题解 开始写写今年省选的题目 考场上我写了一个模拟退火骗了\(90\)分...然而重测后只剩下45 ...

  6. bzoj 2435: [Noi2011]道路修建 树上 dp

    2435: [Noi2011]道路修建 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  7. [BZOJ 3995] [SDOI2015] 道路修建 【线段树维护连通性】

    题目链接:BZOJ - 3995 题目分析 这道题..是我悲伤的回忆.. 线段树维护连通性,与 BZOJ-1018 类似,然而我省选之前并没有做过  1018,即使它在 ProblemSet 的第一页 ...

  8. BZOJ 2435: [Noi2011]道路修建( dfs )

    NOI的水题...直接一遍DFS即可 ------------------------------------------------------------------------- #includ ...

  9. bzoj 3575: [Hnoi2014]道路堵塞

    Description A 国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径, 并且保证这条路径的长度是所 ...

随机推荐

  1. alpha-咸鱼冲刺day5-紫仪

    总汇链接 一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) 四,问题困难   日常啥都不会,百度真心玩一年 ...

  2. 敏捷开发冲刺--day3

    1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285)  Git链接:https://github.com/WHUSE2017/C-team 2 ...

  3. Bate敏捷冲刺每日报告--day2

    1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285)  Git链接:https://github.com/WHUSE2017/C-team 2 ...

  4. python functools.lru_cache做备忘功能

    import time import functools def clock(func): @functools.wraps(func)#还原被装饰函数的__name__和__doc__属性 def ...

  5. R语言基础2

    ----------------------------------R语言学习与科研应用,科研作图,数据统计挖掘分析,群:719954246-------------------------- 通常, ...

  6. python全栈开发-logging模块(日记专用)

    一.概述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,l ...

  7. VMware虚拟机,从厚置备改成精简置备,并减小硬盘的实际占用空间

    工作中由于前期规划不足,导致磁盘空间分配较大,而且是厚置备.后期不再需要时,无法把用不到的空间释放出来,造成空间浪费.经过摸索和实验验证,总结出来一套方法. 风险提示:这个方法在我的环境中验证通过了, ...

  8. python 单例模式的四种创建方式

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...

  9. python实现 字符串匹配函数

    通配符是 shell 命令中的重要功能,? 表示匹配任意 1 个字符,*表示匹配 0 个或多个字符.请使用你熟悉的编程语言实现一个字符串匹配函数,支持 ? 和 * 通配符.如 "a?cd*d ...

  10. 存图方式---邻接表&邻接矩阵&前向星

    基于vector存图 struct Edge { int u, v, w; Edge(){} Edge(int u, int v, int w):u(u), v(v), w(w){} }; vecto ...