Grandpa's Estate
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12337   Accepted: 3451

Description

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.

Input

The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.

Output

There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.

Sample Input

1
6
0 0
1 2
3 4
2 0
2 4
5 0

Sample Output

NO
/*
poj 1228 稳定凸包 给你n个节点构成一个凸包,问再添加节点是否能够形成新的凸包
比如: 这个点构成正方形可以看成一个不稳定凸包
___ ___
| | --> / |
|___| --> \___| 当一条边上有3个或者以上的点时,无论你怎么添加都无法改变的
当逆时针旋转的时候,凸包可以看成 每次只能左转或者直走构成的一个图形
当3个点一条线时,如果添加在凸包外面,那么它必需右转才可能经过那个点 所以我能需要求出凸包然后判断它们是否每条边上都有3个点即可
一个不错的图解:
http://www.cnblogs.com/xdruid/archive/2012/06/20/2555536.html
hhh-2016-05-07 22:17:34
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 1010;
double PI = 3.1415926;
double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
bool cmp(Point a,Point b)
{
double t = (a-lis[0])^(b-lis[0]);
if(sgn(t) == 0)
{
return dist(a,lis[0]) <= dist(b,lis[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} bool Cross(Point a,Point b,Point c)
{
return (b.y-a.y)*(c.x-b.x) == (c.y-b.y)*(b.x-a.x);
} void Graham(int n)
{
Point p; int k = 0;
p = lis[0];
for(int i = 1; i < n; i++)
{
if(p.y > lis[i].y || (p.y == lis[i].y && p.x > lis[i].x))
p = lis[i],k = i;
}
swap(lis[0],lis[k]);
sort(lis+1,lis+n,cmp);
if(n == 1)
{
top = 1;
Stack[0] = 0;
return ;
}
if(n == 2)
{
Stack[0] = 0,Stack[1] = 1;
top = 2;
return;
}
Stack[0] = 0;
Stack[1] = 1;
top = 2;
for(int i = 2; i < n; i++)
{
while(top > 1 && sgn((lis[Stack[top-1]]-lis[Stack[top-2]])
^ (lis[i]-lis[Stack[top-2]])) < 0)
top --;
Stack[top++] = i;
}
} int main()
{
//freopen("in.txt","r",stdin);
int n,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&lis[i].x,&lis[i].y);
}
if(n < 6)
{
printf("NO\n");
continue;
}
Graham(n);
int flag = 1;
for(int i = 1;i < top-1;i++)
{
if(Cross(lis[Stack[i-1]],lis[Stack[i]],lis[Stack[i+1]]) == 0
&& Cross(lis[Stack[i]],lis[Stack[i+1]],lis[Stack[i+2]]) == 0)
{
flag = 0;
break;
}
}
if(flag)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

poj 1228 稳定凸包的更多相关文章

  1. Grandpa's Estate - POJ 1228(稳定凸包)

    刚开始看这个题目不知道是什么东东,后面看了大神的题解才知道是稳定凸包问题,什么是稳定凸包呢?所谓稳定就是判断能不能在原有凸包上加点,得到一个更大的凸包,并且这个凸包包含原有凸包上的所有点.知道了这个东 ...

  2. POJ 1228 (稳定凸包问题)

    <题目链接> <转载于  >>> > 首先来了解什么是稳定的凸包.比如有4个点: 这四个点是某个凸包上的部分点,他们连起来后确实还是一个凸包.但是原始的凸包可 ...

  3. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  4. POJ 1228 Grandpa's Estate 凸包 唯一性

    LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...

  5. 凸包稳定性判断:每条边上是否至少有三点 POJ 1228

    //凸包稳定性判断:每条边上是否至少有三点 // POJ 1228 #include <iostream> #include <cstdio> #include <cst ...

  6. POJ 1228 Grandpa's Estate --深入理解凸包

    题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...

  7. POJ 1228 Grandpa's Estate(凸包)

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11289   Accepted: 3117 ...

  8. ●POJ 1228 Grandpas Estate

    题链: http://poj.org/problem?id=1228 题解: 计算几何,凸包 题意:给出一些点,求出其凸包,问是否是一个稳定的凸包. 稳定凸包:不能通过新加点使得原来凸包上的点(包括原 ...

  9. poj 3348 Cow 凸包面积

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8122   Accepted: 3674 Description ...

随机推荐

  1. 第201621123043 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 系统还在创建中..... 为了让你 ...

  2. vue2.X简单翻页/分页

    由于业务需要 公司把后台所有数据一次性给前端,数据过多,所以前端需要做一些分页的处理,比较简单的翻页. html代码 <table class="three_td"> ...

  3. 201421123042 《Java程序设计》第3周学习总结

    #Week03-面向对象入门 1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 本周学习关键词:类,对象,封装,关键词:final,this,statis. 1 ...

  4. MYSQL中group_concat有长度限制!默认1024

    在mysql中,有个函数叫"group_concat",平常使用可能发现不了问题,在处理大数据的时候,会发现内容被截取了,其实MYSQL内部对这个是有设置的,默认不设置的长度是10 ...

  5. C语言学习之弹跳小球

    重新回过头来看了一遍C语言,才发现我自己的无知,C语言其实好强大,我之前学的不过是一点C语法和做几个数学题.正好3月份的考试要考C语言,重新学一遍,先是在中国大学mooc上把翁恺老师的C语言刷了一遍, ...

  6. 05_Linux目录文件操作命令2_我的Linux之路

    这一节我们继续来学习Linux中对文件和目录的操作命令 mkdir 创建目录 mkdir (选项)(参数) 在Linux端可以使用mkdir来创建目录,如果你没有加其他的路径名,那么默认是在当前目录下 ...

  7. 【52ABP实战教程】0.3-- 从github推送代码回vsts实现双向同步

    需求 在之前的文章中"[DevOps]如何用VSTS持续集成到Github仓库" 我们有讲述如何将vsts中的代码编译推送到github中,这一篇我们来完善,如果有人给你开源项目推 ...

  8. 前端之BOM和DOM

    BOM和DOM简介 BOM(Browser Object Model)是指浏览器对象模型,它使JavaScript有能力与浏览器进行“对话”. DOM(Document Object Model)是指 ...

  9. [机器学习实战]K-近邻算法

    1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近 ...

  10. 路由测试-lee

    //get 路由 Route::get('/', 'WelcomeController@index'); Route::get('home', 'HomeController@index'); //路 ...