Description

策策同学特别喜欢逛公园。公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边。其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间。

策策每天都会去逛公园,他总是从1号点进去,从N号点出来。

策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间。如果1号点 到N号点的最短路长为d,那么策策只会喜欢长度不超过d+K的路线。

策策同学想知道总共有多少条满足条件的路线,你能帮帮它吗?

为避免输出过大,答案对P取模。

如果有无穷多条合法的路线,请输出−1。

solution

正解:拓扑序DP

这题其实有两个拓扑序,一个是 \(dis[i]\) ,即1到 \(i\) 的最短路的长度,另外一个就是图本身的拓扑序了,我们单独拿出满足1到 任意一点\(i\) 最短路的边,然后做DP即可,状态设计为 \(f[i][j]\),表示到达点 \(i\),路径长度为 \(dis[i]+j\) 的方案数,然后枚举转移即可,判 \(-1\) 的方法很巧妙,因为边的长度为0,所以0环上的点的 \(dis\) 都满足拓扑序,也就是拓扑排序中会出现环,那么直接判掉即可,即如果存在某个0环上的一点 \(i\) 满足 \(dis[S][i]+dis[i][T]<=dis[S][T]+K\) 那么就有无穷多的方案数了

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=200005,inf=2e8;
int f[2][N],mod,n,m,K,head[N],nxt[N<<1],to[N<<1],dis[N<<1],num=0;
bool vis[N],imp[N];int Head[N];
void link(int x,int y,int z){
nxt[++num]=head[x];to[num]=y;dis[num]=z;head[x]=num;}
void Link(int x,int y,int z){
nxt[++num]=Head[x];to[num]=y;dis[num]=z;Head[x]=num;} queue<int>q;
void priwork(bool t){
for(int i=1;i<=n;i++)vis[i]=0,f[t][i]=inf;
if(t==0)q.push(1),vis[1]=1,f[t][1]=0;
else q.push(n),vis[n]=1,f[t][n]=0;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=(t?Head[x]:head[x]);i;i=nxt[i]){
RG int u=to[i];
if(f[t][x]+dis[i]<f[t][u]){
f[t][u]=f[t][x]+dis[i];
if(!vis[u])vis[u]=1,q.push(u);
}
}
vis[x]=0;
}
} int dp[N][55],d[N],sum=0,Q[N];
void solve(){
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=nxt[j])
if(f[0][i]+dis[j]==f[0][to[j]])d[to[j]]++;
for(int i=1;i<=n;i++)if(!d[i])Q[++sum]=i;
RG int t=0;int x,u;
while(t!=sum){
x=Q[++t];
for(int i=head[x];i;i=nxt[i]){
u=to[i];
if(f[0][x]+dis[i]==f[0][u]){
d[u]--;
if(!d[u])Q[++sum]=u;
}
}
}
} void Clear(){
memset(dp,0,sizeof(dp));
for(RG int i=0;i<N;i++)Q[i]=d[i]=head[i]=Head[i]=imp[i]=0;
sum=0;num=0;
}
inline void add(RG int &x,int y){x+=y;if(x>=mod)x-=mod;}
void work()
{
Clear();
int x,y,z;
scanf("%d%d%d%d",&n,&m,&K,&mod);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
link(x,y,z);Link(y,x,z);
}
priwork(0);priwork(1);solve(); for(int i=1;i<=n;i++)
if(d[i]>0 && f[0][i]+f[1][i]<=f[0][n]+K){
puts("-1");return ;
} dp[1][0]=1;
for(int k=0;k<=K;k++){
for(int P=1;P<=sum;P++){
int i=Q[P];
if(!dp[i][k])continue;
for(RG int j=head[i];j;j=nxt[j]){
x=to[j];
if(f[0][i]+dis[j]==f[0][x])
add(dp[x][k],dp[i][k]);
}
}
for(RG int i=1;i<=n;i++){
if(!dp[i][k])continue;
for(RG int j=head[i];j;j=nxt[j]){
x=to[j];
if(f[0][i]+dis[j]!=f[0][x]
&& f[0][i]+k+dis[j]-f[0][x]<=K)
add(dp[x][f[0][i]+k+dis[j]-f[0][x]],dp[i][k]);
}
}
}
int ans=0;
for(int i=0;i<=K;i++)add(ans,dp[n][i]);
printf("%d\n",ans);
} int main()
{
freopen("park.in","r",stdin);
freopen("park.out","w",stdout);
int T;cin>>T;
while(T--)work();
return 0;
}

【NOIP 2017】逛公园的更多相关文章

  1. [NOIp 2017]逛公园

    Description 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N$号点是公园的出口,每条边有一个非负权值, 代表策策经 ...

  2. NOIP 2017 逛公园 记忆化搜索 最短路 好题

    题目描述: 策策同学特别喜欢逛公园.公园可以看成一张N个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. ...

  3. NOIP 2017 逛公园 - 动态规划 - 最短路

    题目传送门 传送门 题目大意 给定一个$n$个点$m$条边的带权有向图,问从$1$到$n$的距离不超过最短路长度$K$的路径数. 跑一遍最短路. 一个点拆$K + 1$个点,变成一个DAG上路径计数问 ...

  4. 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP

    题目:https://www.luogu.org/problemnew/show/P3953 主要是看题解...还是觉得好难想啊... dfs DP,剩余容量的损耗是边权减去两点最短路差值...表示对 ...

  5. NOIP 2017 逛公园 题解

    题面 这道题是一道不错的计数类DP: 首先我们一定要跑一遍dijkstra来求得每个点到1号点的最短路: 注意题干,题中并没有说所有点都可以到达n好点,只说了存在一条1号点到n号点的路径:所以我们在反 ...

  6. [NOIP 2017 day1]逛公园

    题目描述 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要 ...

  7. 逛公园[NOIP2017 D2 T3](dp+spfa)

    题目描述 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\)个点\(M\) 条边构成的有向图,且没有自环和重边.其中 1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值,代表策策经过这条 ...

  8. NOIP2017 Day1 T3 逛公园

    NOIP2017 Day1 T3 更好的阅读体验 题目描述 策策同学特别喜欢逛公园.公园可以看成一张\(N\)个点\(M\)条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,\(N\)号点 ...

  9. [Luogu P3953] 逛公园 (最短路+拓扑排序+DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易 ...

随机推荐

  1. C语言作业(三)

    一.完成PTA上四题作业 二.具体解题 (一).A乘以B 1.实验代码 #include <stdio.h> int main() { int A,B,C; scanf("%d ...

  2. iOS开发-简单的循环结构分析

    1.while循环 while (循环条件) {         循环体: } // 1.定义循环变量 ; // 2.循环条件 ) { // 3.循环体 printf("%d\n" ...

  3. bzoj千题计划274:bzoj3779: 重组病毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3779 有一棵树,初始每个节点有不同的颜色 操作1:根节点到x的路径上的点 染上一种没有出现过的颜色 ...

  4. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

  5. java基础复习(1)

    用记事本写java文件 打开记事本,编写java文件,需要注意文件名与类名要相同 注意文件的后缀名(也叫拓展名)改为.java java对大小写是敏感的 public class nihao{\ pu ...

  6. SVN (TortioseSVN) 版本控制之忽略路径(如bin、obj、gen)

    在SVN版本控制时,新手经常会遇到这样的问题: 1.整个项目一起提交时会把bin . gen . .project 一同提交至服务器 2.避免提交编译.本地配置等文件在项目中单独对src.res进行提 ...

  7. java Servlet文件拷贝的模板代码

    //通过response对象获得一个输出流对象 ServletOutputStream os = response.getOutputStream(); //获得要拷贝文件的绝对路径 String r ...

  8. [洛谷P2234][HNOI2002] 营业额统计 - Treap

    Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. ...

  9. python——re模块

    python--re模块 一 正则表达式的作用 1.给字符串进行模糊匹配, 2.对象就是字符串 二 字符匹配(普通字符.元字符) 普通字符:数字字符和英文字母和自身匹配 2.元字符:. ^ $ * + ...

  10. POJ-1122 FDNY to the Rescue!---Dijkstra+反向建图

    题目链接: https://vjudge.net/problem/POJ-1122 题目大意: 给出矩阵,矩阵中每个元素tij表示从第i个交叉路口到第j个交叉路口所需时间,若tij为-1则表示两交叉路 ...