【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description
求第k个没有完全平方因子的数,k<=1e9。
Solution
这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数。
然而k太大数组开不下来是吧,于是这么处理。
二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数。
容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数...
然后发现,每个数的系数就是µ
这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数
具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]*int(n/(i*i))(向下取整)
有
于是二分上限2*k
复杂度为log(n)*sqrt(n)
Code
一开始直接mid=(l+r)>>1溢出T了一发
正确姿势mid=l>>1+r>>1+(l&r&1)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=5e4+; int mu[maxn],flag[maxn];
int prime[maxn],cnt; int getmu(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;i*prime[j]<maxn&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
} int work(int n){
int ret=;
for(int i=;i*i<=n;i++)
ret+=mu[i]*int(1.0*n/(i*i));
return ret;
} int main(){
int T,k;
scanf("%d",&T);
getmu(); while(T--){
scanf("%d",&k);
int l=,r=*k;
while(l<r){
int mid=(l>>)+(r>>)+(l&r&);
if(work(mid)>=k) r=mid;
else l=mid+;
}
printf("%d\n",l);
}
return ;
}
【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数的更多相关文章
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- cf900D. Unusual Sequences(容斥 莫比乌斯反演)
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- HDU 5942 Just a Math Problem 容斥 莫比乌斯反演
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数. 思路:题目意思很简单,但是着重于推导和简化,这 ...
- Codeforces.547C.Mike and Foam(容斥/莫比乌斯反演)
题目链接 \(Description\) 给定n个数(\(1\leq a_i\leq 5*10^5\)),每次从这n个数中选一个,如果当前集合中没有就加入集合,有就从集合中删去.每次操作后输出集合中互 ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- 【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
[BZOJ2440]完全平方数(二分答案,莫比乌斯反演) 题面 BZOJ 题解 很显然,二分一个答案 考虑如何求小于等于这个数的非完全平方数倍数的个数 这个明显可以直接,莫比乌斯反演一下 然后这题就很 ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- codeforces B. Friends and Presents(二分+容斥)
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...
随机推荐
- azkaban的安装部署
一.所需环境 1,JDK 2,HADOOP 4,mysql 3,HIVE 二.安装azkaban 1,安装git命令: yum install git 2,下载azkaban源码:git clone ...
- oracle 修改 字段名称
暂时应该没有对应的方法,所以我用自己想好的方法去修改 /*修改原字段名name为name_tmp,是将想改名称的字段改为没用/临时的字段*/ Alter table 表名 rename column ...
- form表单提交转为可被 getModel(PROJECT.class ,null);接收
var form = new mini.Form("#editForm"+id); form.validate();if (!form.isValid()) { alert('信息 ...
- HP-Socket快速入门:分包、粘包解析
环境配置 vs2015 windows7 64位 hp-socket 5.0 安装hp-socket 新建控制台项目TelnetServer,打开Nuget管理工具,搜索hp-socket: 安装成功 ...
- IDEA: 遇到问题Error during artifact deployment. See server log for details解决方法
1.检查tomcat是否配置正确. 2.检查配置文件是否配置正确,web.xml.等. 3. 4.
- 【转载】tomcat+nginx+redis实现均衡负载、session共享(一)
http://www.cnblogs.com/zhrxidian/p/5432886.html 在项目运营时,我们都会遇到一个问题,项目需要更新时,我们可能需先暂时关闭下服务器来更新.但这可能会出现一 ...
- Android字符串资源及其格式化
http://blog.csdn.NET/wsywl/article/details/6555959 在Android项目布局中,资源以XML文件的形式存储在res/目录下.为了更好的实现国际化及本地 ...
- mysql经典面试题
数据库优化:这个优化法则归纳为5个层次:1. 减少数据访问(减少磁盘访问)2. 返回更少数据(减少网络传输或磁盘访问)3. 减少交互次数(减少网络传输)4. 减少服务器CPU开销(减少CPU及内存开销 ...
- 搭建centos7的开发环境3-Spark安装配置
说起大数据开发,必然就会提到Spark,在这片博文中,我们就介绍一下Spark的安装和配置. 这是Centos7开发环境系列的第三篇,本篇的安装会基于之前的配置进行,有需要的请回复搭建centos7的 ...
- visual studio中如何将string类型值转为BYTE(unsigned char)类型
昨天困惑一件事,就是手里有个string类型的字符串,像01 23 45 67 89 AB CD EF,根据空格拆分为一个个的子字符串后(如EF),需要放到一个BYTE(typedef unsigne ...