BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

Description

Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数。Alice还希望
,这n个数中,至少有一个数是质数。Alice想知道,有多少个序列满足她的要求。

Input

一行三个数,n,m,p。
1<=n<=10^9,1<=m<=2×10^7,1<=p<=100

Output

一行一个数,满足Alice的要求的序列数量,答案对20170408取模。

Sample Input

3 5 3

Sample Output

33
 

求至少有一个质数的方案可以用总方案减去不含质数的方案。
先把1~m的质数筛出来,观察p特别小,考虑每个数%p的值对答案的贡献。
设F[i][j]表示从%p=i到%p=j的方案数,这个矩阵乘1次相当于向序列里多塞了个数,于是这道题变成了矩阵乘法。
然后发现f[i][j]=f[i+1][j+1],因此只需要对每个1~m中的i,f[0][i%p]++即可,剩下的可以通过平移得到。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=20170408;
int n,m,p,prime[7000050],cnt;
bool vis[20000050];
struct Mat {
ll v[105][105];
Mat() {memset(v,0,sizeof(v));}
Mat operator*(const Mat a) const {
Mat ans;
int i,j,k;
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
for(k=1;k<=p;k++)
(ans.v[i][j]+=v[i][k]*a.v[k][j])%=mod;
return ans;
}
}A,B;
Mat pow(Mat x,int y) {
Mat I;
int i;
for(i=1;i<=p;i++) I.v[i][i]=1;
while(y) {
if(y&1) I=I*x;
x=x*x;
y>>=1;
}
return I;
}
void init() {
register int i,j;
vis[1]=1;
for(i=2;i<=m;i++) {
if(!vis[i]) {
prime[++cnt]=i;
}
for(j=1;j<=cnt&&i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
int main() {
int i,j;
scanf("%d%d%d",&n,&m,&p);
init();
for(i=1;i<=m;i++) {
A.v[p][(i-1)%p+1]++;
if(vis[i]) B.v[p][(i-1)%p+1]++;
}
for(i=p-1;i;i--) {
for(j=1;j<=p;j++) {
A.v[i][j]=A.v[i+1][j%p+1];
B.v[i][j]=B.v[i+1][j%p+1];
}
}
printf("%lld\n",(pow(A,n).v[p][p]-pow(B,n).v[p][p]+mod)%mod);
}

BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法的更多相关文章

  1. [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛

    [Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...

  2. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  3. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

  4. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

  5. [Bzoj4818]序列计数(矩阵乘法+DP)

    Description 题目链接 Solution 容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数 然后矩阵乘法优化一下DP即可 Code #include <cstdio> # ...

  6. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  7. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  8. [SDOI2017]序列计数 (矩阵加速,小容斥)

    题面 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希望,这n个数中,至少有一个数是质数. Alice想知道,有多少个序列满足她的要求 ...

  9. BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】

    题目分析: 一个很显然的同类项合并.注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可. 代码: #include<bits/stdc++.h> ...

随机推荐

  1. TCP / IP,HTTP

    大学学习网络基础的时候老师讲过,网络由下往上分为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层.通过初步的了解,我知道IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用 ...

  2. javaScript(1)---概述

    javaScript(1)---概述 学习要点: 1.什么是JavaScript 2.JavaScript特点 3.JavaScript历史 4.JavaScript核心 JavaScript诞生于1 ...

  3. 到底创建了几个String对象?

    到底创建了几个String对象? 标签: 堆栈使用 对象创建 分类: 开发技术 关键字: java 面试题 string 创建几个对象 作者:臧圩人(zangweiren) 网址:http://zan ...

  4. P3370 【模板】字符串哈希

    题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 输入输出格式 输入格式: 第一行包含一个整数N,为字符串 ...

  5. 人手一份核武器 - Hacking Team 泄露(开源)资料导览手册

    https://zhuanlan.zhihu.com/p/20102713 author:蒸米 0x00 序 事先声明本人并不是全栈安全工程师,仅仅是移动安全小菜一枚,所以对泄漏资料的分析难免会有疏忽 ...

  6. 一步一步设置Joomla!开发环境

    转载自:http://h2appy.blog.51cto.com/609721/373414 虽然是英文,可是写的非常浅显易懂,再配合截图,更是明了. http://docs.joomla.org/S ...

  7. Install OpenCV 3.0 and Python 2.7+ on Ubuntu

    为了防止原文消失或者被墙,转载留个底,最好还是去看原贴,因为随着版本变化,原贴是有人维护升级的 http://www.pyimagesearch.com/2015/06/22/install-Open ...

  8. Ubuntu硬盘空间清理

    1.删除多余的安装下载文件: sudo aptitude autoclean sudo aptitude clean 2.删除多余的内核版本: sudo apt-get autoremove 4.去/ ...

  9. 数据库SQL语句中 查询选修了全部课程的学生的学号和姓名

    一.SQL语言查询选修了全部课程的学生的学号和姓名. 两种解决途径: 第一种: 我们可以表示为在SC表中某个学生选修的课程数等于C表中课程总数.相应的SQL语言如下: select S#,SNAME ...

  10. 云计算大数据:Xen、KVM、VMware、hyper-v等虚拟化技术的比较

    1.Xen.KVM.VMware.hyper-v等虚拟化技术的比较,xen和kvm,是开源免费的虚拟化软件. vmware是付费的虚拟化软件. hyper-v比较特别,是微软windows 2008 ...