神经网络MPLClassifier分类
代码:
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 24 14:38:56 2018 @author: zhen
"""
import gzip
import pickle
import numpy as np
from sklearn.neural_network import MLPClassifier # 加载数据
# 设置编码,解决异常:UnicodeDecodeError: 'ascii' codec can't decode byte 0x90 in position 614: ordinal not in range(128)
with gzip.open("E:/mnist.pkl.gz") as fp:
training_data, valid_data, test_data = pickle.load(fp, encoding='bytes')
x_training_data, y_training_data = training_data
x_valid_data, y_valid_data = valid_data
x_test_data, y_test_data = test_data
classes = np.unique(y_test_data) # 将验证集和训练集合并
x_training_data_final = np.vstack((x_training_data, x_valid_data))
y_training_data_final = np.append(y_training_data, y_valid_data) # 设置神经网络模型参数
# 使用solver='lbfgs',拟牛顿法,需要较多的跌点次数
lbfgs = MLPClassifier(solver='lbfgs', activation='relu', alpha=1e-4, hidden_layer_sizes=(50, 50), random_state=1, max_iter=10, verbose=10, learning_rate_init=0.1)
# 使用solver='adam',基于随机梯度下降的优化算法,准确率较低
adam = MLPClassifier(solver='adam', activation='relu', alpha=1e-4, hidden_layer_sizes=(50, 50), random_state=1, max_iter=10, verbose=10, learning_rate_init=0.1)
# 使用solver='sgd',基于梯度下降的自适应优化算法,分批训练数据,效率高,准确性高,建议使用
sgd = MLPClassifier(solver='sgd', activation='relu', alpha=1e-4, hidden_layer_sizes=(50, 50), random_state=1, max_iter=10, verbose=10, learning_rate_init=0.1) # 使用不同算法训练模型
lbfgs.fit(x_training_data_final, y_training_data_final)
adam.fit(x_training_data_final, y_training_data_final)
sgd.fit(x_training_data_final, y_training_data_final) # 预测
lbfgs_predict = lbfgs.predict(x_test_data)
adam_predict = adam.predict(x_test_data)
sgd_predict = sgd.predict(x_test_data) print(lbfgs_predict)
print("*******************************************")
print(adam_predict)
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print(sgd_predict)
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
# 评估模型
print(lbfgs.score(x_test_data, y_test_data))
print("===========================================")
print(adam.score(x_test_data, y_test_data))
print("-------------------------------------------")
print(sgd.score(x_test_data, y_test_data)) # 输出正确结果
print(y_test_data)
结果:

max_iter=10

max_iter=20

注意:
1. 当使用pickle加载mnist数据时,python3.x与python2.x差距较大,python3.x会抛出异常,异常信息为:UnicodeDecodeError: 'ascii' codec can't decode byte 0x90 in position 614: ordinal not in range(128)
此时需要指定编码pickle.load(fp, encoding='bytes')来解决异常!
2. 比较lbfgs(拟牛顿法)、adam(基于随机梯度下降的优化算法)和sgd(基于梯度下降的自适应优化算法)可知,lbfgs波动较大,在相同训练数据的情况下,当迭代次数不同时,模型预测准确率波动较大。adam算法模型训练较快,但模型预测准确率较差,适合应用在预测准确率要求不高,响应时间短的地方。sgd算法在模型训练速度和预测准确率方面都能达到较好的效果,建议使用!
神经网络MPLClassifier分类的更多相关文章
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...
- 深度学习原理与框架-卷积神经网络-cifar10分类(图片分类代码) 1.数据读入 2.模型构建 3.模型参数训练
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码 ...
- TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题
上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 深度学习原理与框架-神经网络-cifar10分类(代码) 1.np.concatenate(进行数据串接) 2.np.hstack(将数据横着排列) 3.hasattr(判断.py文件的函数是否存在) 4.reshape(维度重构) 5.tanspose(维度位置变化) 6.pickle.load(f文件读入) 7.np.argmax(获得最大值索引) 8.np.maximum(阈值比较)
横1. np.concatenate(list, axis=0) 将数据进行串接,这里主要是可以将列表进行x轴获得y轴的串接 参数说明:list表示需要串接的列表,axis=0,表示从上到下进行串接 ...
- Keras人工神经网络多分类(SGD)
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现 文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下, 实现如下, # Author : Hellcat # Time : 2017/12/9 import os ...
- 在 TensorFlow 中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
随机推荐
- Docker最全教程之使用 Visual Studio Code玩转Docker(二十)
前言 VS Code是一个年轻的编辑器,但是确实是非常犀利.通过本篇,老司机带你使用VS Code玩转Docker——相信阅读本篇之后,无论是初学者还是老手,都可以非常方便的玩转Docker了!所谓是 ...
- OAuth2.0记录
阮一峰老师讲解OAuth2.0 http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html 举例详解: https://www.cnblogs.com/ ...
- HTML/CSS初步了解
一.CSS是什么? 它是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的计算机语言.CSS为HTML标记语言提供了一种样式描述,定义了其中元素的显示 ...
- 如何利用MongoDB实现高性能,高可用的双活应用架构?
投资界有一句至理名言——“不要把鸡蛋放在同一个篮子里”.说的是投资需要分解风险,以免孤注一掷失败之后造成巨大的损失. 转发来自 如何利用MongoDB实现高性能,高可用的双活应用架构?http://d ...
- ZJOI2019二轮游记
Postscript 这个彩笔的省选随心游被中考实验考试坑掉了 所以前两天都一直脱离部队,第一天讲课完了才有的过去 一轮凉了那么二轮翻盘?翻车预定.之后还有上海的ACM没有CXR神仙的ACM窝怎么打啊 ...
- 从壹开始微服务 [ DDD ] 之六 ║聚合 与 聚合根 (下)
前言 哈喽大家周二好,上次咱们说到了实体与值对象的简单知识,相信大家也是稍微有些了解,其实实体咱们平时用的很多了,基本可以和数据库表进行联系,只不过值对象可能不是很熟悉,值对象简单来说就是在DDD领域 ...
- 中文分词实战——基于jieba动态加载字典和调整词频的电子病历分词
分词是自然语言处理中最基本的一个任务,这篇小文章不介绍相关的理论,而是介绍一个电子病历分词的小实践. 开源的分词工具中,我用过的有jieba.hnlp和stanfordnlp,感觉jieba无论安装和 ...
- 原生js 遍历文件夹分析xml并保存
其实这种功能,网上相关的代码多的是,我也是因为今天正好要用到这个功能,所以临时写了下,放这里保存下,以便将来自己或者别人用的上吧. 当然我写的是一个hta文件.下面是完整js代码,都是调用active ...
- HTTP1.0和HTTP1.1的区别
1.HTTP 1.1支持长连接(PersistentConnection)和请求的流水线(Pipelining)处理 HTTP 1.0规定浏览器与服务器只保持短暂的连接,浏览器的每次请求都需要与服务器 ...
- 并发系列(4)之 AbstractQueuedSynchronizer 源码分析
本文将主要讲述 AbstractQueuedSynchronizer 的内部结构和实现逻辑,在看本文之前最好先了解一下 CLH 队列锁,AbstractQueuedSynchronizer 就是根据 ...