BZOJ5465: [APIO 2018] 选圆圈(K-D Tree)
题意
Sol
下面是错误做法,正解请看这里
考虑直接用K-D tree模拟。。
刚开始想的是维护矩形最大最小值,以及子树中最大圆的位置,然后。。。
实际上最大圆的位置是不用维护的,直接把原序列排一遍序就可以了
再努力卡卡常就过了
如果还过不了的话可以尝试把所有点都转一个角度
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define chmin(x, y) (x = x < y ? x : y)
#define chmax(x, y) (x = x > y ? x : y)
#define ls(x) T[k].ls
#define rs(x) T[k].rs
#define double long double
const double alpha(acos(-1) / 5);
const double cosa(cos(alpha));
const double sina(sin(alpha));
using namespace std;
const int MAXN = 1e6 + 10;
const double INF = 1e12 + 10, eps = 1e-11;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, WD, root, tot, num, ans[MAXN];
struct Point {
double x[2], r;
int id;
bool operator < (const Point &rhs) const {
return rhs.x[WD] - x[WD] > eps;
}
double operator [] (const int d) {
return x[d];
}
}P[MAXN];
int comp(const Point &a, const Point b) {
return a.r == b.r ? a.id < b.id : a.r > b.r;
}
struct Node {
int ls, rs, id;
double mx[2], mi[2];
Point p;
}T[MAXN];
void update(int k) {
for(int i = 0; i <= 1; i++) {
if(!ans[T[k].id]) T[k].mi[i] = T[k].p[i] - T[k].p.r, T[k].mx[i] = T[k].p[i] + T[k].p.r;
else T[k].mi[i] = INF, T[k].mx[i] = -INF;
if(ls(k)) chmin(T[k].mi[i], T[ls(k)].mi[i]), chmax(T[k].mx[i], T[ls(k)].mx[i]);
if(rs(k)) chmin(T[k].mi[i], T[rs(k)].mi[i]), chmax(T[k].mx[i], T[rs(k)].mx[i]);
}
}
int Build(int l, int r, int wd) {
if(l > r) return 0;
WD = wd; int mid = (l + r) >> 1, k = ++tot;
nth_element(P + l, P + mid, P + r + 1);
T[k].p = P[mid]; T[k].id = P[mid].id;
T[k].ls = Build(l, mid - 1, wd ^ 1) ;
T[k].rs = Build(mid + 1, r, wd ^ 1);
update(k);
return k;
}
double sqr(double x) {
return x * x;
}
bool judge(Point a, Point b) {
double tmp = sqr(a[0] - b[0]) + sqr(a[1] - b[1]);
return sqr(a.r + b.r) + eps - tmp > 0;
}
bool pd(int k, Point a) {
for(int i = 0; i <= 1; i++)
if((a[i] + a.r + eps < T[k].mi[i]) || (a[i] - a.r - eps > T[k].mx[i])) return 1;
return 0;
}
void Delet(int k, Point a) {
if(pd(k, a)) return ;
if(!ans[T[k].id] && judge(T[k].p, a)) ans[T[k].id] = a.id, T[k].p.r = -INF, num++;
if(ls(k)) Delet(ls(k), a);
if(rs(k)) Delet(rs(k), a);
update(k);
}
int main() {
//freopen("a.in", "r", stdin);
N = read();
for(int i = 1; i <= N; i++) {
double x = read(), y = read(), tx = x * cosa - y * sina, ty = x * sina + y * cosa;
P[i].x[0] = x; P[i].x[1] = y; P[i].r = read(), P[i].id = i;
}
root = Build(1, N, 0);
sort(P + 1, P + N + 1, comp);
for(int i = 1; i <= N; i++) if(!ans[P[i].id]) Delet(root, P[i]);
for(int i = 1; i <= N; i++) printf("%d ", ans[i]);
return 0;
}
BZOJ5465: [APIO 2018] 选圆圈(K-D Tree)的更多相关文章
- BZOJ5465 : [APIO 2018] 选圆圈
假设最大的圆半径为$R$,以$2R$为大小将地图划分为一个个格子,那么每个圆只需要检查圆心在附近$9$个格子内部的所有圆. 在当前圆的半径不足$\frac{R}{2}$时重构网格,那么最多重构$O(\ ...
- APIO 2018选圆圈
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...
- 「APIO2018选圆圈」
「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...
- 学习笔记--APIO 2018 二分专题 By wuvin
前言: 在APIO 2018 Day2下午听wuvin讲二分,听了一上午的神仙,现在终于有可以听懂了. 专题: 平均边权最大 题目链接:https://www.questoj.cn/problem/3 ...
- 【APIO2018】选圆圈(平面分块 | CDQ分治 | KDT)
Description 给定平面上的 \(n\) 个圆,用三个参数 \((x, y, R)\) 表示圆心坐标和半径. 每次选取最大的一个尚未被删除的圆删除,并同时删除所有与其相切或相交的圆. 最后输出 ...
- 【LG4631】[APIO2018]Circle selection 选圆圈
[LG4631][APIO2018]Circle selection 选圆圈 题面 洛谷 题解 用\(kdt\)乱搞剪枝. 维护每个圆在\(x.y\)轴的坐标范围 相当于维护一个矩形的坐标范围为\([ ...
- BZOJ5465 APIO2018选圆圈(KD-Tree+堆)
考虑乱搞,用矩形框圆放KD-Tree上,如果当前删除的圆和矩形有交就递归下去删.为防止被卡,将坐标系旋转一定角度即可.注意eps稍微设大一点,最好开上long double. #include< ...
- [BZOJ5465][APIO2018]选圆圈(KD-Tree)
题意:给你n个圆,每次选择半径最大的,将它和与它相交的圆全部删去,输出每个圆是在哪次被删的. KD树模板题.用一个矩形框住这个圆,就可以直接剪枝了.为了防止被卡可以将点旋转一个角度,为了保险还可以多转 ...
- 【LOJ】#2586. 「APIO2018」选圆圈
题解 不旋转坐标系,TLE,旋转坐标系,最慢一个点0.5s--maya,出题人数据水平很高了-- 好吧,如果你不旋转坐标系,写一个正确性和复杂度未知的K - D树,没有优化,你可以得到87分的好成绩 ...
随机推荐
- Java初学者的学习路线建议
java学习这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是我你是如何学习Java的,能不能给点建议?今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈 ...
- 总结day25 ---- udp 初识, 和tcp 进阶
前情提要 一: tcp 和udp 的区别 # tcp # # 面向连接的 可靠的 全双工的 流式传输 # # 面向连接 :同一时刻只能和一个客户端通信 # # 三次握手.四次挥手 # # 可靠的 :数 ...
- 功能一: 数据库访问DAO层方法定义
功能1: 今天到现在为止 实战课程的访问量 yyyyMMdd courseID 使用数据库来进行存储我们的统计结果 Spark Streaming把统计结果写入到数据库里面 可视化前端根据: yyyy ...
- 直接线性变换解法(DLT)用于标定相机
直接线性变换法是建立像点坐标和相应物点物方空间坐标之间直接的线性关系的算法.特点:不需要内外方位元素:适合于非量测相机:满足中.低精度的测量任务:可以标定单个相机. 1 各坐标系之间的关系推导直接线性 ...
- 洛谷P2523 [HAOI2011]Problem c(计数dp)
题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...
- django blank
null: If True, Django will store empty values as NULL in the database. Defaultis False. 如果为True,空值将会 ...
- 手机端全局样式表整理(mobile)
@charset "utf-8";/* * filename: global.css * description: 全局样式(包含样式重置,公共常用 ...
- python 脚本备份 mysql 数据库到 OSS
脚本如下: #!/usr/bin/python ########################################################### ################ ...
- WPF中Popup等弹窗的位置不对(偏左或者偏右)
1.情况如图: 正常情况: 部分特殊情况: 在一般的电脑都能正确显示,就是第一种情况,同样的代码为什么在不同的电脑就会显示不同的位置呢,原来Windows为了满足 不同需求的用户,左撇 ...
- 入门系列之在Ubuntu上安装Drone持续集成环境
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由小铁匠米兰的v 发表于云+社区专栏 介绍 Drone是一个流行的持续集成和交付平台.它集成了许多流行的版本控制存储库服务,如GitHu ...