题目链接

BZOJ3771

题解

做水题放松一下

先构造\(A_i\)为\(x\)指数的生成函数\(A(x)\)

再构造\(2A_i\)为指数的生成函数\(B(x)\)

再构造\(3A_i\)为指数的生成函数\(C(x)\)

那么只需计算

\[A(x) + \frac{A^2(x) - B(x)}{2} + \frac{A^{3}(x) - 3(A(x)B(x) - C(x))}{6}
\]

那么\(x^i\)的系数即为损失价值\(i\)的方案数

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 800005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const LL P = 2281701377ll,G = 3;
inline LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) re = re * a % P;
return re;
}
int R[maxn];
inline void NTT(LL* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
LL gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
LL g = 1,x,y;
for (int k = 0; k < i; k++,g = g * gn % P){
x = a[j + k],y = g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
LL nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = a[i] * nv % P;
}
LL A[maxn],B[maxn],C[maxn],D[maxn],ans[maxn],val[maxn],N,deg;
int main(){
N = read();
REP(i,N){
val[i] = read(),ans[val[i]]++;
A[val[i]] = 1; deg = max(deg,val[i]);
}
//2
int n = 1,m = deg << 1,L = 0;
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(A,n,1);
for (int i = 0; i < n; i++) A[i] = A[i] * A[i] % P;
NTT(A,n,-1);
REP(i,N) A[val[i] << 1]--;
for (int i = 0; i < n; i++) ans[i] += A[i] >> 1; //3
REP(i,N) B[val[i]] = 1;
n = 1,m = deg * 3,L = 0;
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(B,n,1);
for (int i = 0; i < n; i++) B[i] = B[i] * B[i] % P * B[i] % P;
NTT(B,n,-1); //2 + 1
REP(i,N) C[val[i] + val[i]] = 1,D[val[i]] = 1;
int nn = 1; L = 0,m = deg * 3;
while (nn <= m) nn <<= 1,L++;
for (int i = 1; i < nn; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(C,nn,1); NTT(D,nn,1);
for (int i = 0; i < nn; i++) C[i] = C[i] * D[i] % P;
NTT(C,nn,-1);
REP(i,N) C[val[i] * 3]--;
for (int i = 0; i < nn; i++) C[i] *= 3;
for (int i = 0; i < n; i++) B[i] -= C[i],B[i] /= 6,ans[i] += B[i]; for (int i = 0; i <= deg * 3; i++)
if (ans[i]) printf("%d %lld\n",i,ans[i]);
return 0;
}

BZOJ3771 Triple 【NTT + 容斥】的更多相关文章

  1. bzoj3771: Triple(容斥+生成函数+FFT)

    传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...

  2. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  3. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  4. Codeforces 1553I - Stairs(分治 NTT+容斥)

    Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序 ...

  5. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

  6. 51nod 1514 美妙的序列 分治NTT + 容斥

    Code: #include<bits/stdc++.h> #define ll long long #define mod 998244353 #define maxn 400000 # ...

  7. 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]

    传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...

  8. HAOI 2018 染色(容斥+NTT)

    题意 https://loj.ac/problem/2527 思路 设 \(f(k)\) 为强制选择 \(k\) 个颜色出现 \(s\) 种,其余任取的方案数. 则有 \[ f(k)={m\choos ...

  9. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

随机推荐

  1. 【mysql经典题目】行转列

    参考:http://www.cnblogs.com/h07061108/p/mysql_questions.html#3806338 实现如下效果 CREATE TABLE IF NOT EXISTS ...

  2. 【MySQL安装】MySQL5.6在centos6.4上的安装

    卸载原来安装的mysql 安装从官网下载的mysql rpm包 发现有依赖,需要先安装libaio包和libnuma包 再装mysql就可以了 安装客户端 安装完成后,启动mysql 但是发现用没有m ...

  3. Django的简介

    一.MTV模型 Django的MTV模式: Model(模型):和数据库相关的.负责业务对象与数据库的对象(ORM) Template(,模板):放所有的HTML文件 模板语法:目的是将变量(数据库内 ...

  4. Python 3 利用 Dlib 实现摄像头人脸检测特征点标定

    0. 引言 利用 Python 开发,借助 Dlib 库捕获摄像头中的人脸,进行实时人脸 68 个特征点标定: 支持多张人脸: 有截图功能: 图 1 工程效果示例( gif ) 图 2 工程效果示例( ...

  5. Hyperledger Fabric中的Identity

    Hyperledger Fabric中的Identity 什么是Identity 区块链网络中存在如下的角色:peers, orderers, client application, administ ...

  6. List<T>.Distinct()

    )            }; //使用匿名方法            List<Person> delegateList = personList.Distinct(new Compar ...

  7. php异步学习(2)

    PHP开启异步多线程执行脚本   场景要求 客户端调用服务器a.php接口,需要执行一个长达5s-20s不等的耗资源操作,但是客户端响应请求时间为5秒(微信公众账号服务器请求响应超时时间),5s以上无 ...

  8. Requests库常用方法及其详解

    request库七个方法详解 1. request方法 所有方法的的基础方法,三个参数:method,url,**kwargs. 1.1 method:请求方式 method参数共有七个可选的值,分别 ...

  9. 软工实践-Alpha 冲刺 (7/10)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 已经解决登录注册等基本功能的界面. 完成非功能的主界面制作 ...

  10. Alpha事后诸葛会议

    [设想和目标] Q1:我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? "小葵日记"是为了解决18-30岁年轻用户在记录生活时希望得到一美体验友好 ...